
CMPUT 365: Introduction to Reinforcement Learning,
Winter 2023

Worksheet #7: Temporal Difference Methods for Control
Manuscript version: #d68e73-dirty - 2025-03-06 14:20:03-07:00

Question 1. Consider an episodic MDP with the states B,C, D, and the terminal state T (i.e. S =
{B,C,D, T}), and 2 actions (A = {1, 2}) with transitions and rewards as shown on the figure below.

B

Ca = 1, r = +1

Deterministic transitions

Da = 2, r = 0

a = 1, r = +1

a = 2, r = +2

a = 2, r = +4

a = 1, r = -100

Assume that the action values are initialized Q(s, a) = 0, for all s ∈ S and a ∈ A. The agent takes
actions according to an ϵ-greedy policy with ϵ = 0.1. Set the discount factor γ = 1.0.

1. Determine an optimal policy and the optimal action-value function.

2. In the remainder of the problem, we will consider the Sarsa and the Q-learning algorithms where the
initial action-values are set to zero. Further, the stepsize is set to α = 0.1. Consider the episodic data
S0 = B,A0 = 2, R1 = 0, S1 = D,A1 = 2, R2 = 4. What are the action-values obtained by running
Sarsa on this data for the various states?

3. What are the action-values obtained by running Q-learning on the above data for the various states?

4. Let’s consider one more episode: S0 = B,A0 = 2, R1 = 0, S1 = D,A1 = 1, R2 = −100. What are the
action-values obtained by running Sarsa on this data for the various states starting from the previous
estimates obtained with Sarsa on the first episode’s data? What are the action-values obtained by
running Q-learning on this data for the various states starting from the previous estimates obtained
with Q-learning on the first episode’s data?

5. Assume the next episode’s data is the same as in Part 4. Again, write down the action-value estimates
after running Sarsa on this data, continuing from the previously obtained estimates. Do the same for
Q-learning.

6. Do you notice any relationship between the values you obtained by emulating Sarsa and those that
you got by emulating Q-learning? What is the relationship and why does it hold?

Solution.

1. From a visual inspection of the above MDP, clearly the optimal policy is π∗(2|B) = 1, π∗(2|C) = 1,
π∗(2|D) = 1, and it assigns a probability of zero for all other state-action pairs. Next, recall that the
Bellman optimality equation for the action value function is

q∗(s, a) =
∑
s′,r′

p(s′, r′|s, a)[r′ + γmax
a′

q∗(s′, a′)].

Using this, we obtain q∗(C, 1) = 1, q∗(C, 2) = 2, q∗(D, 1) = −100, q∗(D, 2) = 4, q∗(B, 1) = 1+q∗(C, 2) =
3, and q∗(B, 2) = 0 + q∗(D, 2) = 4.

1

2. SARSA:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γQ(D, 2)−Q(B, 2)

]
= 0 + 0.1

[
0 + 0− 0

]
= 0,

Q(D, 2) = Q(D, 2) + α ·
[
r(D, 2) + γQ(T, ·)−Q(D, 2)

]
= 0 + 0.1

[
4 + 0− 0

]
= 0.4.

3. Q–learning:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γmax

a′
Q(D, a′)−Q(B, 2)

]
= 0 + 0.1

[
0 + 0− 0

]
= 0,

Q(D, 2) = Q(D, 2) + α ·
[
r(D, 2) + γmax

a′
Q(T, a′)−Q(D, 2)

]
= 0 + 0.1

[
4 + 0− 0

]
= 0.4.

4. SARSA:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γQ(D, 1)−Q(B, 2)

]
= 0 + 0.1

[
0 + 0− 0

]
= 0,

Q(D, 1) = Q(D, 1) + α ·
[
r(D, 1) + γQ(T, ·)−Q(D, 1)

]
= 0 + 0.1

[
− 100 + 0− 0

]
= −10.

Q–learning:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γmax

a′
Q(D, a′)−Q(B, 2)

]
= 0 + 0.1

[
0 + 0.4− 0

]
= 0.04,

Q(D, 1) = Q(D, 1) + α ·
[
r(D, 1) + γmax

a′
Q(T, a′)−Q(D, 1)

]
= 0 + 0.1

[
− 100 + 0− 0

]
= −10.

5. SARSA:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γQ(D, 1)−Q(B, 2)

]
= 0 + 0.1

[
0 +−10− 0

]
= −1,

Q(D, 1) = Q(D, 1) + α ·
[
r(D, 1) + γQ(T, ·)−Q(D, 1)

]
= −10 + 0.1

[
− 100 + 0 + 10

]
= −19.

Q–learning:

Q(B, 2) = Q(B, 2) + α ·
[
r(B, 2) + γmax

a′
Q(D, a′)−Q(B, 2)

]
= 0.04 + 0.1

[
0 + 0.4− 0.04

]
= 0.076,

Q(D, 1) = Q(D, 1) + α ·
[
r(D, 1) + γmax

a′
Q(T, a′)−Q(D, 1)

]
= −10 + 0.1

[
− 100 + 0 + 10

]
= −19.

6. We observe that the SARSA and Q–learning updates are same for Q(D, 1), and they are different for
Q(B, 2). For Q(B, 2), Q–learning makes the update using the next state action pair as (D, 2), even
though the sampled next-state-action pair is (D, 1), because Q(D, 2) is higher then Q(D, 1).

2

Question 2. Answer the following:

1. Give at least two conditions that are “necessary” for Sarsa to produce a sequence (Qt)t≥0 of value
function estimates that converges to q∗ with probability one. For each condition, justify why is it
“necessary”, that is even if all the other conditions hold and the condition in consideration is violated,
then convergence fails to hold.

2. Can any of these conditions be satisfied when Sarsa is used an in episodic MDP with exploring starts
(and which one)? Why or why not?

Solution. 1. The required conditions are as follows

Condition 1: All the state-action pairs are visited infinitely often. As a specific example, consider an
episodic MDP with a single state, two actions, both terminating (essentially a bandit problem).
Assume that one of the actions, call this a0, is chosen only once. Further, assume that the reward
for this action is Bernoulli with parameter 0.5. Then, Q1(s, a0) = Q2(s, a0) = · · · , and Q1(s, a0) ∈
{0, 1} (i.e. the action values stop updating after the first timestep) while q∗(s, a0) = 0.5. Hence,
convergence to q∗ fails.

Condition 2: The action-selection mechanism is such that it selects greedy actions in the limit as
t → ∞. A simple example where this condition is violated when Sarsa is used while following
a fixed memoryless policy π. (This setting is the prediction setting, as opposed to the control
setting.) In this case, if Qt converges, it can only converge to qπ.

Condition 3: The stepsizes need to satisfy the Robbins-Monro conditions: Allowing the stepsizes to
depend on the state-action pairs, we need that both

∑
t≥0 αt(St, At) = ∞ and

∑
t≥0 α

2
t (St, At) <

∞ hold with probability one, while 0 ≤ αt(St, At) for all t ≥ 0.

To see an example when convergence fails to hold, consider the bandit example again. In that
example, Sarsa reduces to mean estimation of the reward for both the actions. Consider the case
first when

∑
t≥0 αt(St, At) < ∞. Say, A0 = a0 and α0(s, a0) = 1 and αt(s, a0) = 0 otherwise.

Then, as in the first example, Q1(s, a0) = Q2(s, a0) = · · · , and Q1(s, a0) ∈ {0, 1} while q∗(s, a0) =
0.5. Hence, convergence to q∗ fails. Now, for the case when

∑
t≥0 α

2
t (St, At) = ∞ assume that

αt(St, At) = α > 0. Then, Qt is an exponential moving average and limt→∞ V(Qt) > 0. Hence,
Qt cannot converge to q∗.

2. Exploring starts could help with condition 1. This also requires that all episodes end after finitely
many steps. Otherwise, it could happen that condition 1 will still not be satisfied.

3

Question 3. (Exercise 6.11 S&B) Why is Q-learning considered an off-policy control method?

Solution. The book defines off-policy learning as a learning process when the value of a policy π is learned
but the data is not generated from following π. Q-learning can learn the value function of an optimal policy
π∗ while following a policy that is different from π∗. As such, it is considered as an off-policy learning
method.

Regarding whether Q-learning is a control method: In Chapter 5.3, we read that control methods are
methods to approximate an optimal policy. Q-learning can be used for this purpose, and as such it is
considered a control method.

4

Question 4. (Exercise 6.12 S&B, slightly modified) Suppose the action selection is greedy (as opposed to,
say, ϵ-greedy).

1. Is Q-learning then exactly the same algorithm as Sarsa? That is, will they make exactly the same
action selections and weight updates?

2. Are there any downsides to this choice?

Solution.

1. No, even in this case, Q-learning and Sarsa are different algorithms.

Given the same starting state-action pair, if the action selection (during the episode) is greedy, Q-
learning and Sarsa will make the same action selections and the same weight update (this is because,
in case of greedy action selection, the next action A′ = argmaxa Q(S′, a), and therefore Q(S′, A′) =
maxa Q(S′, a)). However, this only happens on the first timestep. Recall that for the transition tuple
(S,A,R, S′, A′), Q-learning takes action A′ after it makes the updates to the action values, whereas
Sarsa takes the action A′ before making the updates to the action values. This will result in different
actions being chosen at later timesteps, and hence the data generated (and consequently the updates
made) by the two algorithms would differ.

2. The downside is that there will be no exploration and as such neither Sarsa, nor Q-learning, can be
expected to give good results.

5

Question 5. In this question we compare the variance of the target for Sarsa and Expected Sarsa. Recall
that the update for Sarsa is

Qt+1(St, At) = Qt(St, At) + α [Rt+1 + γQt(St+1, At+1)−Qt(St, At)] ,

and the update for expected-Sarsa is

Qt+1(St, At) = Qt(St, At) + α

[
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Qt(St+1, a
′)−Qt(St, At)

]
,

where π is a fixed policy that is used to generate the data S0, A0, R1, S1, A1, R2,

1. Let Ht = (S0, A0, R1, S1, A1, R2, . . . , St) and H ′
t = (S0, A0, R1, S1, A1, R2, . . . , St, At). Show that

V[Q(St+1, At+1)
∣∣Ht+1] ≥ V

[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)

∣∣∣∣Ht+1

]
.

2. Challenge Question: Show that

V[Rt+1 + γQ(St+1, At+1)
∣∣H ′

t] ≥ V

[
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)

∣∣∣∣H ′
t

]
,

that is, the appropriate conditional variance of the Sarsa target is always at least as large as that of
for the Expected Sarsa target. (Hint: Use the law of total variance.)

Solution.

1. Clearly by Markov property, we can replace the variance conditioned on the history Ht+1 by the
variance conditioned on just the last state St+1. Then for any s′ ∈ S,

V
[∑
a′∈A

π(a|St+1)Q(St+1, a
′)

∣∣∣∣St+1 = s′
]
= 0,

since there is no randomness in the expression. Then

V
[
Q(St+1, At+1)

∣∣St+1 = s′
]

= E
[
Q(s′, At+1)

2
∣∣St+1 = s′

]
− E

[
Q(s′, At+1)

∣∣St+1 = s′
]2

(definition of variance)

=
∑
a′∈A

π(a′|s′)Q(s′, a′)2 −
(∑

a′∈A
π(a′|s′)Q(s′, a′)

)2

(by the definition of expectation and LOTUS)

≥ 0.

By Jensen’s inequality, the equality in the above line holds if and only if the estimated Q-values at
state s′ are equal for all actions, that is, Q(s′, a1) = · · · = Q(s′, a|A|). (The above proof is essentially
showing that the variance of a random variable is always non-negative.)

2. For convenience, we omit writing down the conditioning on St = s and At = a (that is, instead of
writing V[·|St = s,At = a], we write V[·]). We are asked to compare the variance of the target and

6

https://en.wikipedia.org/wiki/Law_of_total_variance

thus we compute:

V
[
Rt+1 + γQ(St+1, At+1)

]
− V

[
Rt+1 + γ

∑
a′∈A

π(a′|St+1)Q(St+1, a
′)

]
= γ2

{
V
[
Q(St+1, At+1)

]
− V

[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)

]}
(since Rt+1 is conditionally independent of St+1 and At+1)

= γ2

{
E
[
V
[
Q(St+1, At+1)

∣∣St+1

]]
− V

[
E
[
Q(St+1, At+1)

∣∣St+1

]]
− E

[
V
[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)
∣∣∣St+1

]]
+ V

[
E
[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)
]∣∣∣∣St+1

]}
.

(by the law of total variance)

Now, notice that E
[
V
[∑

a′∈A π(a|St+1)Q(St+1, a
′)
∣∣St+1 = s′

]]
= 0. Also,

V
[
E
[
Q(St+1, At+1)

∣∣St+1

]]
= V

[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)

]
= V

[
E
[∑
a′∈A

π(a′|St+1)Q(St+1, a
′)
∣∣∣St+1

]]
.

Putting the above results into the previous equation (and now explicitly writing the conditioning on
St = s and At = a) gives us

V
[
QSARSA(St, At)

∣∣∣St = s,At = a
]
− V

[
Qexpected-SARSA(St, At)

∣∣∣St = s,At = a
]

= γ2E
[
V
[
Q(St+1, At+1)

∣∣St+1, St = s,At = a
]∣∣∣St = s,At = a

]
= γ2E

[
V
[
Q(St+1, At+1)

∣∣St+1

]∣∣∣St = s,At = a
]

(using the Markov property)

≥ 0. (since the variance is always positive)

Therefore, we conclude that the SARSA update rule has a higher variance than the expected-SARSA
update rule when following the same target policy.

7

Question 6. (Challenge Question) (Exercise 6.13 S&B) What are the update equations for Double
Expected Sarsa with an ϵ-greedy target policy?

Solution. Double Expected Sarsa will maintain two action-value functions, Q
(i)
t , i = 1, 2. Given any

function q : S × A → R, let πq denote the the ϵ-greedy policy with respect to q: πq(a|s) = (1 − ϵ)I(a =
argmaxa′ q(s, a)) + ϵ/A, where A = |A| is the number of actions. Here, for simplicity, we define argmax so
that it breaks ties in a systematic fashion. For arbitrary q : S ×A → R and memoryless policy π, introduce
the notation q(s, π) :=

∑
a π(a|s)q(s, a). The update rule then is as follows: Choose It uniformly at random

from {1, 2}. Then, one possible update rule is

Q
(It)
t+1(St, At) = (1− α)Q

(It)
t (St, At) + α

[
Rt+1 + γQ

(It)
t (St+1, πQ

(3−It)
t

)

]
.

Another possible update rule is

Q
(It)
t+1(St, At) = (1− α)Q

(It)
t (St, At) + α

[
Rt+1 + γQ

(3−It)
t (St+1, πQ

(It)
t

)

]
.

Note that in both update rules, following the idea of double-Q learning, the policy used in the calculation

of the “target” uses the action-value estimate (Q
(3−It)
t in the first update rule, Q

(It)
t in the second update

rule) that differs from the action-value estimate (Q
(It)
t in the first update rule, Q

(3−It)
t in the second update

rule) used to get the target itself.

8

Question 7. (Exercise 6.8 S&B) Show that an action-value version of the expression

Gt − V (St) =

T−1∑
k=t

γk−tδ
(value)
k ,

where δ(value) = Rt+1 + γV (St+1, At+1)− V (St, At), holds for the action-value form of the TD error

δt = Rt+1 + γQ(St+1, At+1)−Q(St, At)

as well. (Assume that the action-values don’t change from step to step, that is Qt = Q for all t ≥ 0 and
some function Q.)

Solution. Let the terminal timestep be denoted by T . Therefore, ST represents the terminal state, and
GT = Q(ST , a) = 0 for all actions a ∈ A. Then

Gt −Q(St, At) = Rt+1 + γGt+1 −Q(St, At) + γQ(St+1, At+1)− γQ(St+1, At+1)

=
(
Rt+1 + γQ(St+1, At+1)−Q(St, At)

)
+ γ

(
Gt+1 −Q(St+1, At+1)

)
= δt + γ

(
Gt+1 −Q(St+1, At+1)

)
= δt + γδt+1 + γ2

(
Gt+2 −Q(St+2, At+2)

)
...

= δt + γδt+1 + γ2δt+2 + · · ·+ γT−t−1δT−1 + γT−t
(
GT −Q(ST , ·)

)
=

T−1∑
k=t

γk−tδk.

9

Question 8. Solve the following questions.

1. Let X1, X2, . . . be independent random variables, that take on the values {0, 1}. Assume that for all
t ≥ 1, P(Xt = 1) = p, where p ∈ (0, 1). Define

T := min{t ≥ 1 : Xt = 1} .

Think of X1, X2, . . . as outcomes of a coin-flip, where 0 corresponds to tails and 1 corresponds to
heads. Then T is the number of flips until seeing the first head (including the first timestep). Show
that

E[T] = 1/p.

2. Using the answer in the first part, show that there exists a finite, episodic MDP with n states and two
actions, such that all of the following hold:

• The episode lengths are at least n.

• New episodes start from a fixed state s0 of the MDP.

• ϵ-greedy with Q-learning (initialized at zero) needs at least Ω(2n) episodes before the action-value
of the optimal action at s0 gets higher than the action value of the sub-optimal action at s0,
regardless of the choice of the stepsizes in Q-learning.

• The value of s0 under the optimal policy is one.

Solution.

1. Fix a number k ≥ 1. Then,

P(T = k) = P(X1 = 0, X2 = 0, . . . , Xk−1 = 0, Xk = 1)

=

(k−1∏
i=1

P(Xi = 0)

)
· P(Xk = 1) (since Xis are independently distributed)

= (1− p)k−1p.

Therefore,

E[T] =
∞∑
k=1

k · P(T = k) =
∞∑
k=1

k(1− p)k−1p = p
∞∑
k=1

k(1− p)k−1.

Note that (1− p)E[T] = p
∑∞

k=1 k(1− p)k = p
∑∞

k=1(k − 1)(1− p)k−1. Then,

E[T]− (1− p)E[T] = pE[T] = p

∞∑
k=1

(1− p)k−1 =
p

1− (1− p)
= 1 ⇒ E[T] = 1/p.

2. Let S = {0, 1, . . . , n− 1, n}, A = {0, 1}, n is the terminal state. The transitions are deterministic; the
next state is min(n, s + a) when the current state is s ∈ S and the action is a ∈ A. All rewards are
zero, except when taking action 1 at state n− 1. The initial state is s0 = 0.

Clearly, the episode length are at most n. It remains to see the behavior of Q-learning with ϵ-greedy
when the initial value estimates are zero. Due to the Q-learning update, all action values remain zero
until state n is visited for the first time (because all rewards incurred are zero unless one transitions
to state n). Let T be the index of the first episode when state n is encountered for the first time. If T ′

10

is the index of the first episode when the action value of 1 at state 0 is higher than the action value of
action 0 at state 0, we have T ′ > T because in episode T this property does not hold.

When all action values are the same, Q-learning with ϵ-greedy chooses an action uniformly at random
from the two actions. Thus, in every episode before episode T , Q-learning chooses actions uniformly
at random. While following the uniform random policy, the probability of encountering state n is
p = (1/2)n, because for this to happen, action 1 has to be chosen n times and the probability of
choosing action 1 is 1/2, and the choices are independent of each other. Thus, E[T] = 1/p = 2n by the
first part of the problem, and hence from T ′ > T , we have

E[T ′] > E[T] = 2n ,

which means that E[T ′] = Ω(2n).

11

