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Question 1. Let f(z,y) = (v + y)2 + e*¥. Recall that the gradient, assuming it exists, is composed of the
partial derivatives for each variable,

Vi(z,y) = [ oty

of (z,y) ]
oy

1. What is Vf(x,y) for the f defined above?
2. What is Vf(0, 1), the value that V[ : (x,y) — Vf(x,y) takes at (z,y) = (0,1)?




Question 2. Find the gradient of f for the following functions:
1. f(z,y,2) = %, where z,y,z € R, z # 0, y > 0;
2. f(z) = e’ 15, where z € R;
3. f(x) =x"B3, where x, 3 € RV,
4. f(x) = (xTB —y)?, where x, B € RN, y € R.




Question 3. (FEzercise 9.1 SE&B, slightly modified) Show that tabular methods (such as those presented in
Course 2 of the MOOC and Part I of the RL book) are a special case of linear function approximation. In
this case, what would the feature vectors be? Consider for example tabular value function prediction.




Question 4. Consider an episodic MDP with the state set S = {1,2,3} and a discount factor of v = 0.9.
Suppose 0(s;w) = ws, where w € R and s € S. The agent observes the following episodic data before
reaching the terminal state at time ¢ = 3, while following some fixed policy:

So=1,Ri =-7,5=3,Ry =5,5 =1,R3 = 10,53 = <terminal>.
Assume that w is initialized to 0 at the beginning of learning and the stepsize is fixed to a = 0.1. Then
1. What is 9(1; w) when w is updated using gradient Monte-Carlo on this data?
2. What is 9(1; w) when w is updated using semi-gradient linear TD on this data?

3. Again compute the estimate 9(1; w) for both gradient Monte-Carlo and semi-gradient Linear TD, when
w is updated after seeing the same episode using the respective algorithms.

(Write down the numeric result to two decimal places.)




Question 5. Consider a discounted MDP M with state space S. Let 9(s;w) = w'x(s), where w € R?
and s € S and x : S — R? is some feature map. Fix a memoryless policy 7 of M. For on-policy learning
using TD while following 7 in M, at the TD fixed point wrp, as the book mentions (cf. Equation (9.4)),
the mean-squared value error, VE, is within a constant factor of the lowest possible error:

_ 1

VE(wrp) < —— min VE(w).

1—v7 w
1. If v = 0.9 and miny, VE(w) = 1, what is the minimum and maximum value of VE(wrp)? What is the
minimum and maximum value of VE(wrp) if miny, VE(w) = 07

(Hint: VE is defined in Equation (9.1) in the book.)

2. We have seen that if & can perfectly represent the value function (in the sense that for some wq € R,
(s;w) = vr(s) for all s € §) then miny, VE(w) = 0. How about the other direction: if miny, VE(w) =
0, then does that mean v can perfectly represent v,? Justify your answer.




Question 6. Assume that V f(x) exists. Then answer the following using true or false?
1. The gradient of a function is a function.

2. The gradient of a function at a point will point in the direction of steepest descent, i.e. following the
direction of the gradient will locally decrease the function value.

3. For a function f, the gradient V f(x) at point x will be the zero vector if x globally minimizes f.
4. For a function f, the gradient V f(x) at point x will be the zero vector if x globally mazimizes f.

5. For a function f, if the gradient V f(x) = 0 then x locally minimizes the function f.




