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Question 1. (Exercise 6.1 S&B with additional details) Fix an episodic MDP with discount factor γ.
Consider an episode, of length T timesteps, generated by the agent following policy π in this MDP:

(S0, A0, R1, S1, . . . , ST−1, AT−1, RT , ST .

Let Vt represent the agent’s estimate of the value function vπ and δt = Rt+1 + γVt(St+1) − Vt(St) be the
corresponding TD error, at timestep t. Recall that Gt − Vt(St) denotes the Monte-Carlo error incurred by
the agent at timestep t and in state St.

(a) Show that

Gt − Vt(St) =
T−1∑

k=t

γk−tδk +

T−2∑

k=t

γk−t+1(Vk+1(Sk+1)− Vk(Sk+1)) .

(b) Note that your answer is different from Eq. 6.6 from the RL book:

Gt − V (St) =

T−1∑

k=t

γk−1δk.

This happens because when deriving this relation the book assumed that V was fixed. Now, assume
that Vt is updated with the TD method:

Vt+1(St) = Vt(St) + αtδt ,

while Vt+1(s) = Vt(s) for s 6= St. Assume that V0(s), Rt+1 ∈ [0, rmax] and 0 ≤ αt ≤ α, s ∈ S. Show that
it then follows that

|Gt − Vt(St)−
T−1∑

k=t

γk−tδk| ≤ α
γ rmax

1− γ

hence, Gt − Vt(St) ≈
∑T−1
k=t γ

k−tδk indeed holds when the stepsizes αt are small, in line with what the
book suggests after Eq. 6.6.
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Question 2. Let Eπ be the expectation operator corresponding to the probability distribution Pπ induced
by following some memoryless policy π from an arbitrary initial distribution. Let

Ht = (S0, A0, R1, S1, A1, R2, . . . , St) .

Show that for any t ≥ 1,
Eπ[Rt+1 + γVt(St+1)|Ht] = (TπVt)(St) ,

where, as introduced earlier,

(Tπv)(s) =
∑

a∈A
π(a|s){r(s, a) + γ

∑

s′∈S
p(s′|s, a)v(s′)} .
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Question 3. (Exercise 6.3 S&B with additional details; also see Example 6.2, page 125 of the RL book)
Consider the episodic MDP shown in the figure below. The agent starts in state C, and takes the actions
left or right with 50% probability in each of the states. The extreme states are terminal states. The agent
receives a reward of +1 on the right-most transition and a reward of zero everywhere else.
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Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-↵ MC when applied to the following Markov reward process:

A B C D E
100000

start

A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v⇡(C) = 0.5. The true values of all the states, A through E, are
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The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (↵ = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of ↵. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.

The left sub-graph shows the value estimates, computed using the TD(0) algorithm with a constant
stepsize of α = 0.1, for the five states at the beginning of learning (marked by 0), and at the end of 1, 10,
and 100 episodes. From the results shown in the left graph, it appears that the first episode results in a
change in only V (A). What does this tell you about what happened on the first episode? Why was only the
estimate for this one state changed? By exactly how much was it changed?
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Question 4. (Exercise 6.4 S&B) The specific results shown in the right graph of the random walk example
are dependent on the value of the step-size parameter, α. (a) Do you think the conclusions about which
algorithm is better would be affected if a wider range of α values were used? (b) Is there a different, fixed
value of α at which either algorithm would have performed significantly better than shown? Why or why
not?
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Question 5. (Challenge Question) (Exercise 6.5 S&B) In the right graph of the above figure, the root-
mean-squared value error of the TD method seems to go down and then up again, particularly at high values
of α. What could have caused this? Do you think this always occurs, or might it be a function of how the
approximate value function was initialized?
Hint: Letting x = x(t) denote the angle at which a pendulum deviates from the vertical line, for x small, we
have that the acceleration of the pendulum, ẍ, satisfies ẍ = −x. This creates a periodic motion that never
stops. More realistic (physical) pendulums follow an equation such as ẍ = −x− cẋ. Here, ẋ is the velocity
of the pendulum and −cẋ is a force that arises due to air resistance and eventually makes the pendulum
to stop with c > 0. The discrete time version of this equation can be obtained using Euler discretization.
First introduce v = ẋ. Then, we have v̇ = ẍ = −x − cv. Discretizing this with timestep ∆ > 0, using the
notation vk = v(∆k) and approximating vk+1 = v(∆(k+ 1)) = v(∆k) + ∆v′(∆k) = vk + ∆v′(∆k) and using
v′(∆k) = −xk − cvk, we get

vk+1 − vk = −∆xk − c∆vk ,

where we also use xk = x(∆k). We also have ẋ = v, the discrete time version of which is

xk+1 − xk = ∆vk .

Putting together things we have

(
vk+1

xk+1

)
=

(
1− c∆ −∆

∆ 1

) (
vk
xk

)
.

For small values of ∆ this quite closely approximates the behavior of a pendulum which will swing with
decreasing amplitudes. More generally, if we have an equation of the form ek+1 = Aek with ek ∈ Rd for
some matrix A, the values of ek,i can be seen to be oscillating (potentially with decreasing amplitudes) when
some of the eigenvalues of the matrix are complex valued. Can you find a connection between this behavior
and the TD update equations? For the purpose of this problem consider the simplified update equation
Vt+1 = (1− α)Vt + αTπVt that we considered in class.
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Question 6. (Exercise 6.7 S&B with additional details) The TD update can be written as

Vt+1(St) = Vt(St) + αt

[
Rt+1 + γVt(St)− Vt(St+1)

]
,

and Vt+1(s) = Vt(s) for s 6= St, where αt ∈ (0, 1] is a stepsize.
Design an off-policy version of the TD update that can be used with arbitrary target policy π and a

behavior policy b that satisfies that b(a|s) > 0 whenever π(a|s) > 0 for some action a ∈ A in some state
s ∈ S. The “goal” of the update is still to estimate vπ, but now the data is generated from the MDP while

following policy b. (Hint: use the importance sampling ratio ρ := π(At|St)
b(At|St)

to design this update.) Argue

that your update is “correct”. Denoting by Eb the expectation operator underlying the probability measure
Pb induced by interconnecting the behavior policy b with the MDP, show that

Eb[Vt+1(St)− Vt(St)|Ht] = αt((TπVt)(St)− Vt(St)) ,

where as before Ht = (S0, A0, R1, S1, A1, R2, . . . , St).
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Question 7. Modify the Tabular TD(0) algorithm for estimating vπ, to estimate qπ instead.

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
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Question 8. Suppose that in an environment, state transitions are deterministic and that the reward is
bounded, so that rmin = 0 and rmax = 1, with the expected reward being E[Rt+1|St = s] = 0.5 for all
timesteps t and states s. Find the maximum and minimum possible TD error δt = Rt+1 +γV (St+1)−V (St),
where γ = 0.9 and V = vπ for a deterministic policy π.
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Question 9. Assume the agent interacts with a simple two-state MDP shown below. Every episode begins
in state X, and ends when the agent transitions from state Y to the terminal state T (denoted by gray box).
Therefore, the set of states is S = {X,Y, T}. There is only one possible action in each state, which means
that there is only one possible policy in this MDP. Let us denote the set of actions A = {A}. In state Y , the
agent terminates when it takes action A; upon doing so, it sometimes gets a reward of +1000 and sometimes
gets a reward of -1000, that is the reward on this last transition is stochastic. Let γ = 1.0.

X Y
R = 0

P (R = r|Y ) =

⇢
0.5 if r = �1000
0.5 if r = +1000

<latexit sha1_base64="88qcrSZ+CGj2pHdyHRkZ9LLinTY="></latexit><latexit sha1_base64="88qcrSZ+CGj2pHdyHRkZ9LLinTY="></latexit><latexit sha1_base64="88qcrSZ+CGj2pHdyHRkZ9LLinTY="></latexit><latexit sha1_base64="88qcrSZ+CGj2pHdyHRkZ9LLinTY="></latexit>

Deterministic transitions (X to Y to terminal)

1 action

Stochastic reward from Y

(a) Write down π(a|s), for all s ∈ S, a ∈ A.

(b) Write down all the possible trajectories (sequence of states, actions, and rewards) in this MDP that start
from state X?

(c) What is vπ(X) and vπ(Y ))?

(d) Assume that our estimate is equal to the value of π. That is V (s) = vπ(s) for all s ∈ S. Then compute
the TD-error δt = Rt+1 + γV (St+1) − V (St) for the transition from state Y to the terminal state,
assuming Rt+1 = +1000. Why is the TD-error not zero if we initialize the value estimate with the true
value function, that is, V init(Y ) = vπ(Y )?

(e) Based on the above answer, what does this mean for the TD-update, for constant α = 0.1? Will the
value estimate of state Y remain zero, i.e. V (Y ) = vπ(Y ) = 0, after we update the value as well? Recall
that the TD-update is V new(St) = V old(St) +αδt. What does this tell us about the updates that TD(0)
would make on this MDP?

(f) What is the expected TD-update, from state Y for the given V ?

(g) Assume still that V = vπ = 0. What is the expectation and the variance of the TD update from state
X? What is the expectation and the variance of the Monte-carlo update from state X?
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Question 10. (Challenge Question) In this question we consider the variance of the TD target, Rt+1 +
γV (St+1), compared to the variance of the Monte-Carlo target, Gt. To make the analysis simpler, assume
that V = vπ. Show that, under this simplification, the variance of the Monte-Carlo target is higher than (or
equal to) the variance of the TD target, that is,

V[Gt|St] ≥ V[Rt+1 + γvπ(St+1)|St].

(Note that variance of the targets is a factor in learning speed—targets with lower variance typically allow
for faster learning. Also note that both these targets are equal in expectation (why?), that is E[Gt|St] =
E[Rt+1 + γvπ(St+1)|St].)
Hint: Recall the tower property of expectation, also known as the law of total expectation:

E[Gt|St] = E
[
E[Gt|St+1]

∣∣St
]
,

where the outer expectation is over St+1 and the inner expectation is over Gt. You might have to use the
following decomposition as well, which can be derived using the law of total variance along with the Markov
property (how?):

V[Gt|St] = E
[
V[Gt|St+1]

∣∣St
]

+ V
[
E[Gt|St+1]

∣∣St
]
. (1)

One way to use this decomposition could be to simplify V
[
E[Gt|St+1]

]
by showing that E[Gt|St+1] =

E[Rt+1|St+1] + γvπ(St+1).
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