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Question 1. (Exercise 5.4 S&B) The pseudocode for Monte Carlo ES is inefficient because, for each state-
action pair, it maintains a list of all returns and repeatedly calculates their mean. Suggest a modification of
the algorithm such that with the same data it computes the same results but it does not use lists for storing
returns and such that the update of the action-values takes constant time. The new method should have a
memory footprint that doubles the footprint needed just to store the action-values.
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Question 2. (Exercise 5.5 S&B) Consider an MDP with a single nonterminal state s and a single action
that transitions back to s with probability p and transitions to the terminal state with probability 1−p. Let
the rewards be +1 on all transitions, and let γ = 1. Suppose you observe one episode that lasts 10 steps,
with return of 10. What is the (every-visit) Monte-Carlo estimator of the value of the nonterminal state s?

Every-Visit Monte Carlo prediction, for estimating V

Input: a policy     to be evaluatedπ
Initialize:

V(s) ∈ ℝ, arbitrarily, for all s ∈ S
Retu rns(s) ←an empty list, for all s ∈ S

Loop forever (for each episode):
π : S0, A0, R1, S1 . . . , ST−1, AT−1, RTGenerate an episode following

G ← 0
Loop for each step of episode, t = T −1, T −2, . . . , 0

G ← γG + Rt+ 1
Append     toG Retu rns(St)
V(St) ← average(Retu rns(St))
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Question 3. Off-policy Monte Carlo prediction allows us to use sample trajectories to estimate the value
function for a policy that may be different than the one used to generate the data. Consider the following
MDP, with two states B and C, with 1 action in state B and two actions in state C, with γ = 1.0. In state
C both actions transition to the terminating state with A = 1 following the blue path to receive a reward
R = 1 and A = 2 following the green path to receive a reward R = 10. Assume the target policy π has
π(1|C) = 0.9 and π(2|C) = 0.1, and that the behaviour policy b has b(1|C) = 0.25 and b(2|C) = 0.75.

1. What are the true values vπ?

2. Imagine you got to execute π in the environment for one episode, and observed the episode trajectory
S0 = B,A0 = 1, R1 = 1, S1 = C,A1 = 1, R2 = 1. What is the return for B for this episode?
Additionally, what are the value estimates Vπ, using this one episode with Monte Carlo updates?

3. You do not actually get to execute π; the agent follows the behaviour policy b. You get one episode when
following b and the observed the episode trajectory is S0 = B,A0 = 1, R1 = 1, S1 = C,A1 = 2, R2 = 10.
What is the return for B for this episode? Notice that this is a return for the behaviour policy, and
using it with Monte Carlo updates (without importance sampling ratios) would give you value estimates
for b.

4. What is the return for B using this episode if we use importance sampling ratios where the goal is to
get value estimates for policy π? Additionally, what is the resulting value estimate for vπ using this
return?

B C T

+1

+10

+1
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Question 4. Let ρt =
π(At|St)
b(At|St)

. Let s ∈ S be such that Pb(St = s) > 0, where Pb is the probability distri-

bution that arises from following b from some arbitrary fixed initial distribution. Let Eb be the expectation
that corresponds to Pb. Assume that for any a ∈ A such that π(a|s) > 0, it holds that b(a|s) > 0.

1. (*) Verify that Eb[ρt|St = s] = 1

2. (*) Verify that Eb[ρtRt+1|St = s] = Eπ[Rt+1|St = s].

3. (***) What is the variance of the importance corrected one-step reward, Vb(ρtRt+1|St = s)? When
would this variance be large?
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Question 5. (Exercise 5.2 S&B) Suppose every-visit MC was used instead of first-visit MC on the blackjack
task. Would you expect the results to be very different? Why or why not?
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Question 6. (Exercise 5.3 S&B) What is the backup diagram for Monte Carlo estimation of qπ?
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Question 7. Consider the three state MDP below with terminal state T3 and γ = 1. Suppose you observe
three episodes: {S0, S1, T3} with a return of 2, {S0, S1, T3} with a return of 2, {S0, S2, T3} with a return of
1. What is the (every-visit) Monte-carlo estimate of the value for each of state S0, S1, S2? How would the
Monte-Carlo estimates change if r(S0, A1, S1) = +1.00?

Note: In the above question, the notation is a bit weird and deviates from what we have been using so
far. In the class notes and the RL book, we use upper-case alphabets for random variables, whereas in this
question, we referenced actual states and actions with the upper-case alphabets. Ideally, the question should
have used lower-case alphabets to reference the actual states and actions, that is, S = {s0, s1, s2, t3} and
A = {a1, a2}.
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Question 8. Consider the three state MDP from the previous question, but let r(S1, A1, T3) = +1.00 and
r(S2, A0, T3) = +2.00. You observe the following episodes: {S0, S1, T3} with a return of 2, {S0, S1, T3} with
a return of 2, {S0, S1, T3} with a return of 1, {S0, S2, T3} with a return of 1. What is the (every-visit)
Monte-Carlo estimate of the value for each of state S0, S1, S2?
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Question 9. Suppose you would like to estimate the expected outcome for 3X2 where X is the outcome of
a fair die. You run an experiment and observe the following sequence of rolls

1, 1, 6, 3, 4.

How would you use the above data to estimate the expected value E[3X2] for a fair die if the above rolls
were observed from a loaded die with P(X = 1) = 1/2 and P(X = i) = 1/10 for i = 2, 3, 4, 5, 6?
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Question 10. Off-policy Monte Carlo prediction allows us to use sample trajectories to estimate the value
function for a policy that may be different than the one used to generate the data. Assume the behaviour
policy is uniform random: it takes each action with equal probability in each state. The environment has
two possible states {1, 2} and two possible actions in each state {1, 2}, with γ = 1.0. Suppose we collect the
following episode, by following the behaviour policy

S0 = 1, A0 = 2, R1 = 3, S1 = 2, A1 = 1, R2 = −4 .

We want to evaluate target policy π, which selects action 1 with 0.3 probability in each state. Give an
estimate of vπ(1) and vπ(2), using the episode generated under b using ordinary importance sampling.
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Question 11. (****, inspired by Section 5.4)
Call a distribution p ∈ M1(A) over the action space A to be ϵ-soft, if p(a) ≥ ϵ/A holds for any a ∈ A.

Let Mϵ+(A) = {p ∈ M1(A) : mina∈A p(a) ≥ ϵ/A} be the set of ϵ-soft distributions over A. Let Πϵ+ be the
set of policies that choose ϵ-soft distributions over the actions only:

Πϵ+ = {π ∈ Π : πt(ht) ∈ Mϵ+(A) for any ht ∈ Ht and t ≥ 0} .

Let v∗ϵ+ : S → R be defined by

v∗ϵ+(s) = sup
π∈Πϵ+

vπ(s) , s ∈ S .

In words, v∗ϵ+(s) is the best value achievable by ϵ-soft policies. Show that

v∗ϵ+(s) = max
a∈A

[
r′(s, a) + γ

∑
s′∈S

p′(s′|s, a)v∗ϵ+(s′)

]
,

where

p′(s′|s, a) = (1− ϵ)p(s′|s, a) + ϵ

A

∑
a′∈A

p(s′|s, a′) , and

r′(s, a) = (1− ϵ)r(s, a) +
ϵ

A

∑
a′∈A

r(s, a′) .

Hint: Repeat the steps of the proof of the fundamental theorem.
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