
CMPUT 365: Introduction to Reinforcement Learning,
Winter 2023

Worksheet #4: Dynamic Programming
Manuscript version: #4a4cf0-dirty - 2023-02-14 17:08:07-07:00

In these problems, unless otherwise specified, we consider a finite MDP M = (S,A,R, p) with the
discounted total expected reward criterion with discount factor 0 ≤ γ < 1.

Question 1. In class we showed that the optimal value function v∗ is the fixed point of the Bellman
optimality equation:

v∗(s) = max
a∈A

{
r(s, a) + γ

∑

s′∈S
p(s′|s, a)v∗(s′)

}
, s ∈ S . (1)

Define q∗ : S ×A → R by

q∗(s, a) = r(s, a) + γ
∑

s′∈S
p(s′|s, a)v∗(s′) , s ∈ S, a ∈ A . (2)

Show that q∗ satisfies the following fixed-point equation:

q∗(s, a) = r(s, a) + γ
∑

s′∈S
p(s′|s, a) max

a′∈A
q∗(s′, a′) , s ∈ S , a ∈ A . (3)

1

Question 2. Let π be a memoryless policy, let qπ be its action-value function. Show that qπ is the fixed
point of the operator T̃π : RS×A → RS×A that is defined as

(T̃πq)(s, a) =

[
r(s, a) + γ

∑

s′∈S
p(s′|s, a)

∑

a′∈A
π(a′|s′)q(s′, a′)

]
(s ∈ S, a ∈ A , q ∈ RS×A) .

2

Question 3. Let π be a memoryless policy. The Bellman operator for evaluating π is defined to be the
operator Tπ : RS → RS such that

(Tπv)(s) =
∑

a∈A
π(a|s)

[
r(s, a) + γ

∑

s′∈S
p(s′|s, a)vk(s′)

]
.

Show that Tπ is a contraction.

Note: An alternate way to prove this, as suggested in the lectures, would be to first split the operator T
into multiple operators as

T = Π ◦R ◦G ◦ P,

where Π : RS×A → RS is defined (Πx)(s) :=
∑
a∈A π(a|s)x(s, a), R : RS×A → RS×A is defined (Rx)(s, a) :=

r(s, a) + x(s, a), G : RS×A → RS×A is defined (Gx)(s, a) := γx(s, a), and P : RS → RS×A is defined
(Px)(s, a) :=

∑
s′∈S p(s

′|s, a)x(s). And then to show that each of these individual operators is a contraction,
which would imply that T is a contraction as well.

3

Question 4. Let π be a memoryless policy. Take the Bellman operator T̃π as defined in Question 2. Show
that T̃π is a contraction with contraction factor γ with respect to the maximum norm.

4

Question 5. (****) Let π be a memoryless policy. Take the Bellman operator Tπ as defined earlier. Show
that Tπ is a contraction with contraction factor γ with respect to the weighted-2-norm

‖v‖π =

√∑

s∈S
µ(s)(v(s))2 ,

where µ ∈M1(S) is a distribution such that for any s′ ∈ S,

µ(s′) =
∑

s∈S
µ(s)

∑

a∈A
π(a|s)p(s′|s, a) .

The distribution µ is known as the stationary distribution of π.

Note: We now discuss the inequality we used in the solution: For n ∈ N, given real numbers α1, α2, . . . , αn ∈
[0, 1] that sum to one, and arbitrary real numbers x1, x2, . . . , xn ∈ R, the following inequality holds

(n∑

i=1

αixi

)2

≤
n∑

i=1

αix
2
i .

This is a special case of the incredibly useful Jensen’s inequality (pronounced as “Yensen”). For completeness
(and for fun!), we give an elementary proof of this special case.

We use induction on n. The case n = 1 is trivial. For n = 2,

(α1x
2
1 + α2x

2
2)− (α1x1 + α2x2)2 = α1x

2
1 + α2x

2
2 − (α2

1x
2
1 + α2x

2
2 + 2α1α2x1x2)

= α1(1− α1)x21 + α2(1− α2)x22 − 2α1α2x1x2 = α1α2x
2
1 + α1α2x

2
2 − 2α1α2x1x2

= α1α2(x1 − x2)2 ≥ 0,

gives us the desired result, α1x
2
1 + α2x

2
2 ≥ (α1x1 + α2x2)2. Now assume that there exists an m, such that

the inequality holds for all n ≤ m. (Note that for each of the different values of n, we will have different
sequences (αi)i and (xi)i). Now we will show that the inequality would also hold for n + 1. Consider the
appropriately defined sequences (αi)i∈[n+1] and (xi)i∈[n+1]. Then,

(n+1∑

i=1

αixi

)2

=

(
α1x1 +

n+1∑

i=2

αixi

)2

=

(
α1x1 + (1− α1)

n+1∑

i=2

αi
1− α1

xi

)2

(a)

≤ α1x
2
1 + (1− α1)

(n+1∑

i=2

αi
1− α1

xi

)2 (b)

≤ α1x
2
1 + (1− α1)

n+1∑

i=2

αi
1− α1

x2i

=

n+1∑

i=1

αix
2
i ,

where in step (a) we used inequality for 2 variables; and in step (b), noting that
∑n+1
i=2

αi

1−α1
= 1, we used

the inequality for n variables. This completes the induction, and thereby also the proof.

5

https://en.wikipedia.org/wiki/Jensen%27s_inequality

Question 6. Show that the operator T̃ : RS×A → RS×A defined using

(T̃ q)(s, a) =

[
r(s, a) + γ

∑

s′∈S
p(s′|s, a) max

a′∈A
qk(s′, a′)

]
(s ∈ S, a ∈ A, q ∈ RS×A)

is a contraction with contraction factor γ with respect to the maximum norm.

6

Question 7. Every deterministic memoryless policy corresponds to a stochastic memoryless policy (the
reverse is not true). What probability will the stochastic memoryless policy assign to an action a ∈ A given
a state s ∈ S that corresponds to the deterministic memoryless policy as given by a map π : S → A.

7

Question 8. (Exercise 4.1 S&B) Consider the 4x4 gridworld below, where actions that would take the agent
off the grid leave the state unchanged. The first figure shows the number of nonterminal states. The task
is episodic with γ = 1 and the terminal states are the shaded blocks. Using the precomputed values for the
equiprobable policy below, what is qπ(11,down)? What is qπ(7,down)? (The figure in the bottom, left give
the values of vπ.)

4.2. Policy Improvement 77

 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0 0.0

 0.0 0.0 0.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0

-1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7

-2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4

-6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1

-14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

Vk for the

Random Policy

Greedy Policy

w.r.t. Vk

k = 0

k = 1

k = 2

k = 10

k = !

k = 3

optimal
policy

random
policy

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

 0.0

vk
 for the

random policy
vk greedy policy

 w.r.t. vk

Figure 4.1: Convergence of iterative policy evaluation on a small gridworld. The left column is
the sequence of approximations of the state-value function for the random policy (all actions
equally likely). The right column is the sequence of greedy policies corresponding to the value
function estimates (arrows are shown for all actions achieving the maximum, and the numbers
shown are rounded to two significant digits). The last policy is guaranteed only to be an
improvement over the random policy, but in this case it, and all policies after the third iteration,
are optimal.

8

Question 9. (Exercise 4.1 S&B) Consider the above gridworld again. But now assume that a new state 15
is added to the gridworld just below state 13, and its actions, left, up, right, and down, take the agent to the
states 12, 13, 14, and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then is, vπ(15) for the equiprobable random policy? Now suppose the dynamics of state 13 are also
changed, such that action down from state 13 takes the agent to the new state 15. What is vπ(15) for the
equiprobable random policy in this case?

9

Question 10. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of a
sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has staked on that flip; if
it is tails, she loses her stake. The game ends when the gambler wins by reaching her goal of $100, or loses
by running out of money. On each flip, the gambler must decide what portion of her capital to stake, in
integer numbers of dollars. The gambler is interested in maximizing the chance that she reaches her goal.

This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the gambler’s
capital, s ∈ S = {0, 1, 2, ..., 99, 100} (with 0 and 100 being the terminal states), and the actions are the stakes
a ∈ A(s) = {1, ...,min(s, 100 − s)} for s ∈ S \ {0, 100}. (Note that the action set depends on the state the
agent is in, and we don’t worry about taking any actions in the terminal states.) The reward is +1 when
reaching the goal of 100 and zero on all other transitions. The probability of seeing heads is ph = 0.4.

1. What does the value of a state mean in this problem? (For example, in a gridworld, modeled as
an undiscounted finite-horizon MDP and where the agent receives a reward of 1 per step, the value
represents the expected number of steps to the goal state.) To build some intuition, think about the
minimum and maximum possible values, and think about the values of state 50 (which is 0.4) and
state 99 (which is near 0.95). Also, to simplify things, only focus on vπ(s) for s ∈ S \ {0, 100}.

2. Modify the pseudocode for value iteration to more efficiently solve this specific problem, by exploiting
your knowledge of the dynamics. Hint: Not all states transition to every other state. For example, can
you transition from state 1 to state 99?

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s0,r

p(s0, r |s, a)
h
r + �vk(s0)

i
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v⇤ under
the same conditions that guarantee the existence of v⇤.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v⇡ and v⇤.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v⇤. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating ⇡ ⇡ ⇡⇤

Algorithm parameter: a small threshold ✓ > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop:
| � 0
| Loop for each s 2 S:
| v V (s)
| V (s) maxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

| � max(�, |v � V (s)|)
until � < ✓

Output a deterministic policy, ⇡ ⇡ ⇡⇤, such that
⇡(s) = argmaxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

Value iteration e↵ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di↵erence between

10

Question 11. (Challenge Question) (Exercise 4.4 S&B) The policy iteration algorithm on page 80 has
a subtle bug in that it may never terminate if the policy continually switches between two or more policies
that are equally good (the lectures on the other hand were careful about this). This is okay for pedagogy,
but not for actual use. Modify the pseudocode so that convergence is guaranteed. Note that there is more
than one approach to solve this problem.

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy ⇡0 happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, ⇡, has been improved using v⇡ to yield a better policy, ⇡0, we can then
compute v⇡0 and improve it again to yield an even better ⇡00. We can thus obtain a
sequence of monotonically improving policies and value functions:

⇡0
E�! v⇡0

I�! ⇡1
E�! v⇡1

I�! ⇡2
E�! · · · I�! ⇡⇤

E�! v⇤,

where
E�! denotes a policy evaluation and

I�! denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating ⇡ ⇡ ⇡⇤

1. Initialization
V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� 0
Loop for each s 2 S:

v V (s)
V (s) P

s0,r p(s0, r |s, ⇡(s))
⇥
r + �V (s0)

⇤

� max(�, |v � V (s)|)
until � < ✓ (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable true
For each s 2 S:

old-action ⇡(s)
⇡(s) argmaxa

P
s0,r p(s0, r |s, a)

⇥
r + �V (s0)

⇤

If old-action 6= ⇡(s), then policy-stable false
If policy-stable, then stop and return V ⇡ v⇤ and ⇡ ⇡ ⇡⇤; else go to 2

11

