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Question 1. Suppose γ = 0.9 and the reward sequence is R1 = 2, R2 = −2, R3 = 0 followed by R4 = R5 =
· · · = 7, an infinite sequence of 7s. What are G1 and G0?
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Question 2. Assume you have a bandit problem B = (pa)a∈[k], where for each action a ∈ [k], pa is a pmf
of rewards incurred when a is chosen.

1. Specify an MDP M by giving its state space, action space, reward space, transition probability function
such that the following holds:

Any bandit algorithm B gives rise to an MDP algorithm B̃ such that for any t ≥ 0, the
distribution of B̃’s (undiscounted) return in M after t steps is the same as the distribution
of B’s total reward in B after t steps, and the converse also holds: the distributions of the
returns of any MDP algorithm is matched by that of a corresponding bandit algorithm.

(*)

2. Let the bandit algorithm B be B = (πt)t≥0, where for t ≥ 0, πt : ([k]×R)t →M1([k]). In particular, in
time step t ≥ 0, when the past action-reward sequence is (a0, r0, . . . , at−1, rt−1), B recommends using
an action randomly sampled from πt(a0, r0, . . . , at−1, rt−1).

Describe how B̃ works. How does B̃ get action At when the history of its interaction with M is
S0, A0, R1, S1, A1, . . . , Rt, St? How does it use π?

3. (hardness: *) Argue that (*) holds for B̃ that you specified in the previous item.

4. (hardness: *) Show the converse reduction: Given an MDP algorithm for M , describe a corresponding
bandit algorithm such that their reward distributions match (which you need to show formally).

5. In the above two-way reduction between bandits and MDPs, we used undiscounted, continuing MDPs.
Yet, often people compare bandits to using a horizon of 1, or a discount factor of γ = 0. What is their
argument? When a bandit is viewed as an MDP with discount factor γ = 0, what is that we can claim
for the relationship between the corresponding problems?

Remember that to specify an MDP you need to state what the state space, the action space, the transition
function is and how returns are calculated and whether the MDP is continuing or episodic.
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Question 3. Fix t ≥ 0 and let R1, R2, · · · ∈ [−ρ, ρ] for some ρ ≥ 0. Let T ∈ {0, 1, . . . } ∪ {∞}. Recall

that Gt =
∑T−t−1

i=0 γiRt+1+i where the value of the sum is defined to be zero if T − t− 1 < 0 (“empty sum
evaluates to zero”).

1. Assume that T <∞. Show that |Gt| <∞.

2. Assume now that T = ∞ (i.e., in the definition of Gt the upper limit of the sum is ∞). Show that it
still holds that |Gt| <∞.

Hint: Recall the triangle inequality.
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Question 4 (From discounted to undiscounted problems with coin flips). (**)
Fix r1, r2, · · · ∈ [−ρ, ρ] and 0 ≤ γ < 1. Consider flipping biased coins where the probability of head is

1− γ until a head comes out. Let T be the time when we get the first head. Show that

E

[
T∑

t=1

rt

]
=

∞∑
t=0

γtrt+1 .

Note: The result of this exercise allows to transform discounted MDPs with a discount factor 0 ≤ γ < 1
into an undiscounted episodic MDP so that under any causal action-selection method, the total expected
discounted in the first MDP is the same as the total undiscounted return in the second MDP.

The transformation is as follows: Let M be a discrete MDP with state space S, action space A, reward
space R and transition function P . Without loss of generality assume that 0 ∈ R. Consider an MDP M ′

with state space S ′ = S ∪ {⊥} where ⊥ 6∈ S, and action and reward spaces identical to the respective spaces
of M . Let P ′ be the transition function for the new MDP so that

P ′(s′, r′|s, a) =


γP (s′, r′|s, a) , if s ∈ S, a ∈ A, s′ ∈ S, r′ ∈ R ;

(1− γ)P (r′|s, a) , if s ∈ S, a ∈ A, s′ = ⊥, r′ ∈ R ;

1, if s = s′ = ⊥, a ∈ A, r′ = 0 ;

0, otherwise .

Here, P (r′|s, a) =
∑

s′∈S P (s′, r′|s, a) is the probability of seeing r′ when a is used in s.
In words, ⊥ is a new terminal state: Upon reaching ⊥, the state remains ⊥ and no further rewards are

received (⊥ is an absorbing state). In any state of the original MDP, together with generating a transition,
a biased coin is flipped, independently of previous transitions and coin flips. The bias (probability of head)
of the coin is 1 − γ. If the outcome is head, the next state is ⊥, otherwise the next state is whatever was
generated from P . The reward incurred is always as generated.

The way terminal states are treated here are a little different from what is in the SB20 book: The book
avoids defining transition probabilities for terminal states, while here we make terminal states into absorbing
ones. We do this because it is more convenient: We do not need to treat terminal states as special from the
perspective of how transitions are defined.
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Question 5. Let r1, r2, . . . be such that for t ≥ 1, |rt| ≤ ρt for some ρ ≥ 1. Let 0 ≤ γ < 1. Show that

∞∑
t=0

γtrt+1

is absolutely convergent if ργ < 1.
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Question 6. Recall that by Eq. (3.5) from the book, r(s, a) =
∑

r∈R r
∑

s′∈S p(s
′, r|s, a) and by Eq. (3.6)

of the book, r(s, a, s′) =
∑

r∈R r
p(s′,r|s,a)
p(s′|s,a) for any s′ ∈ S such that p(s′|s, a) > 0 (if p(s′|s, a), we let r(s, a, s′)

to be an arbitrary value). Show that

r(s, a) =
∑
s′∈S

p(s′|s, a)r(s, a, s′) .
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Question 7. Consider a three state, episodic MDP with state space S = {s1, s2,⊥}, where the only terminal
state of the MDP is ⊥. The action space A = {a1, a2}. From both states, action a1 either leads to the
terminal state with probability of β, or it leads to the same state where it was used. From s2, action a2
either leads to the terminal state with probability of α, or it leads s2. From s1, action a2 either leads to s2
with probability α, or it leads to s1.

Describe p(s′|s, a) for all combinations of (s, a, s′) as a table (the columns should be s, a, s′ and the
corresponding probability p(s′|s, a), the rows should be ordered lexicographically where s1 precedes s2, s2
precedes ⊥ and a1 precedes a2.

While the book avoids defining transition probabilities when s is a terminal state, in this exercise follow
the convention that once the terminal state is reached, it cannot be escaped: the terminal state is absorbing.
Include the full table: Your table should have 3× 2× 3 = 18 rows.
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