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On-policy TD(0), linearly approximated,

In reinforcement learning, it’s highly rated.
Updating weights with each new step,
Learning with bootstrapping, never to forget.

With every move, it seeks to improve,
Converging to some good groove.
Value estimation is the key,

To finding the best policy.

The algorithm’s simplicity,

Makes it a favorite of the RL community.

A poem to honor its efficacy,

On-policy TD(0) with linear function approximation, oh so mighty.
— ChatGPT with some edits from yours’ truly

1 The problem

Let M = (S, A, R,p) be a finite MDP, with S = {1,...,S}. Let 7 : S — M;(S) be a memoryless
stochastic policy. Let Sy, Ag, R1, 51, A1, Ro, S92, ... be a trajectory. We let P denote the probability
distribution over the sample space that holds Sy, Ag, R1, S1, A1, Ro, So, ... that arises from following
7 in M starting from a distribution € M;(S), that is, Sy ~ p and for ¢ > 0, Ay ~ 7(-|S;) and
(Ris1,S41) ~ p(-,-|St, Ay). Further, we assume we are given a map x : S — R%, which we will call a
feature-map. For a vector 6 € R%, let vg : S — R be defined by

vg(s) = 0" x(s), seS.

Following the standard nomenclature in the literature, we call 6 a weight vector (its components are used
in a weighted sum together with the components of the features to get a value). The problem considered
is to design an incremental update rule that generates a sequence of vectors (6;)¢>( such that 6; — 6 in
an appropriate sense and such that vg__ is close to vy.



2 TD(0) with linear function approximation

Given )y € R, the feature map x, the above data, and a steps-size sequence (o )¢>0 of non-negative
numbers, TD(0) generates a sequence of vectors (6;);>1 such that for all ¢ > 0,

Ory1 = O + 04 (01) X, (D
where we define X; to be the feature vector of the state .S; visited at time ¢:
Xt = .’L'(St) .

Further, we define d;(#), the temporal difference error, or, in short, the TD-error, at time ¢ when the weight
vector 6 is used, as

01(0) = Rit1 + yvp(Si+1) — vg(St) -

3 Convergence

The sequence of states, (S;)¢>0 forms a Markov chain' and for any ¢, s, s’ € S such that P(S; = s) > 0,
P(Si+1 = §'|St = s) = (Pr)s,¢ where the transition matrix P, € [0, 1]9%9 is given by

(Pﬂ)s,s’ = Z W(als)p(slls,a) :

acA

A distribution p € M;(S) is called a stationary distribution of P, if for all ' € S it holds that

Z M(S)(Pﬂ)s,s’ = M(sl) :

seS
It follows that if the distribution of S; is u (that is, P(S; = s) = u(s), s € S) then S;1; also has the
distribution p. Every finite Markov chain has at least one stationary distribution.> Thinking of ;. as a
row-vector (which is how we, conventionally, think of distributions when we view them as vectors), the
condition that p is a stationary distribution of P; takes the form

uPr = p.

We call a Markov chain irreducible if every state can be reached from every other state. If a Markov
chain is not irreducible, its state space can be partitioned into multiple non-empty parts such that states
within the same part can be reached from each other, but states belonging to different parts cannot be
reached from each other. A finite state space Markov chain that is not irreducible has more than one
stationary distribution.

We call a state s € S periodic with period ¢ > 2 if for any n > 0, (P}), s is non-zero if and only if n
is an integer multiple of ¢. Note that here (Py); o gives the probability that the chain will get to state s’ in
n steps when it starts at state s. A Markov chain that has no periodic states is called aperiodic. A simple
example of a Markov chain that is not aperiodic is a chain with two states, where the transitions are such
that the chain alternates (deterministically) between the two states. The period of both states in this case is
two.



A Markov chain that is both irreducible and aperiodic has nice properties. In particular, it has a
unique stationary distribution and no matter what the initial distribution of the states is, the distribution
ui(s) = P(S; = s) forall s € S, converges to the chain’s unique stationary distribution. Further, this
convergence is exponentially fast: ||y, — p|| < Cexp(—ct) for all ¢ > 0, where ¢,C > 0 are fixed
positive constants.

The following theorem holds true:

Theorem 3.1 (Convergence of TD(0)). Assume that (St)¢>0 defines an irreducible and aperiodic Markov
chain with stationary distribution i € M1 (S). Assume further that iy > 0, S, oy = 00, and Y, a < o0
and that the matrix G = Y g 1(s)x(s)x(s) " is non-singular. Then there exists 0, € R? such that
0y — 0, with probability one.

We note in passing that the condition that the Markov chain is aperiodic is for convenience. As we
shall see this helps with some of the arguments. However, the claim would continue to hold even without
this assumption. We will not prove this theorem, but will sketch the main reasons behind its convergence.
However, we first discuss the properties of 6,.

4 On the limit point(s) of TD(0)
Let pt(s) = P(S; = s), for t > 0. Define

f1(0) =E[0,(0)X] .

A simple calculation then shows that

= () (s)((Trve)(s) — va(s)) .

seS

As noted earlier, if (Py) is irreducible and aperiodic, s — p, where p is the unique stationary distribution
of P,. Hence, assuming that 6; — 6, as t — oo, we expect that

F(6.) =0 2

must hold, where
= > u(s)z(s)((Trvg)(s) — vo(s)). 3)
seS

In the rest of this section we examine the consequences of Equation (2). For this, we will only need that u
is a stationary distribution of P, but we will not need to assume that Py is irreducible and aperiodic.
Define a family of functions (.Jp)gcpa as follows:

1
Jo(0') = 1 Trvg = el

Here, for a function v : S — R we let

Jull? = > u(s)

sES



to be the p-weighted squared two-norm of u. A simple calculation shows that
f(0) =—=VJy(0). “)

Indeed, fixing 6 and letting u = T;vg, we have
VJy(0') = *Vg/ Z 11(5) (vgr () — u(s))?
= Z w(s)(ver(s) — u(s))Verog (s)
= Z w(s)(vgr(s) — u(s))x(s) . )

Plugging back u = T}yvg and substituting 6 for §’ gives the result.?
Now, from Equation (4) it follows that f(6.) = 0 implies that V.Jp, (6) = 0. On the other hand, for
0,0 € R, V.Jy(0') = 0 implies that
¢’ € arg min Jyp(0").
9//
This holds because Jy is a convex function of its argument and convex functions have the property that if
a point makes the function’s derivative (or gradient) zero then it must be a minimizer of the function. It
follows that
0. € arg min Jy, (0"). (6)
9//
Define the feature matrix X € R5*, so that the sth row of X is 2 (s). Note that if we identify vy with
a vector, as usual, the equality vy = X6 holds for any § € R

In what follows, we assume that the d x d matrix G = Y, u(s)z(s)z(s)" that was defined in
Theorem 3.1, and which can be equivalently defined via

G=X"DX,

is invertible. Here, D = diag(1) is the diagonal matrix whose diagonal entries are given by the respective
elements of p.
That G is non-singular implies that for any u € RS the minimizer of

0 — ||lu— ngi

is uniquely defined (you might recall this argument, from a previous ML course, used while discussing
weighted least squares regression). This in turns allows us to define the projection operator IT : RS — R,
which is defined as follows:

Iy = X arg 1rr11n||u—vg|]2 (7)
OeRd

An equivalent definition of IT is that it gives the unique v = ITu € R? such that

2 _ . o2
e = vl = min flu — v,


https://en.wikipedia.org/wiki/Weighted_least_squares

By some calculation, we can also see that
Hu=XG 'XDu,

and from this we see that IT is a linear operator. We can thus also identify IT with the matrix XG~1X " D.
From this, we also immediately see that for any 6 € R4, u € RS,

(vg,u —uy, =0, 8)
where we use the notation

(u,v), = Z w(s)u(s)v(s) =u' Duv.
seS
Note that Equation (8) is known as a Pythagorean identity: It states that vg is orthogonal to u — ITw in the
geometry induced by (-, -),,, where we call u and v orthogonal to each other in this geometry exactly when
(u,v), = 0. In words, this identity expresses the fact that the “error” u — Ilu induced by approximating
u with ITu is orthogonal to any element of the subspace

H = {vg : § € RY} )

of RY.
Now, one can rewrite Equation (6) in terms of vy, . Noting that 6, € arg ming. Jy, ("), it follows
from the definition of .Jp, (that is, Jy, (6') = %||Txve, — ver HZ) that

v, = T vy, .

Hence, if TD(0) converges, it must converge to a fixed point of the composite operator I177;.
The first question then is whether II7. has a fixed point at all (and whether it has multiple fixed
points). As it turns out, the following holds:

Theorem 4.1. Assume that G is non-singular (so that 11 is well-defined). Then, (i) T is a || - ||,
contraction with contraction factor v, and (ii) it has a unique fixed point.

Proof. The proof of Part (i) consists of showing that the projection II is a non-expansion, while 7 is a
~y-contraction with respect to the chosen norm. Assume now that we have already proven Part (i). Now,
consider the vector space H defined by Equation (9). Let F' = IIT;. Clearly, forany v € H, F'v € H.
Further, || - ||, on H is a norm: Clearly, || - ||, satisfies the triangle inequality, it is non-negative and
positive homogeneous, even when restricted to H. Further, for v € H, it also holds that ||v||,, = 0 implies
that v = 0. Indeed, from v € H it follows that v = vy for some 6 € R?. Hence, ||| = ||vg| = 0T GO.
This, if [|v[|% = 0 then 0T GO = 0. Since G is non-singular, it is positive definitive, hence, § T G0 = 0
implies that & = 0, which in turn implies that v = X0 = 0. Thus, we can apply Banach’s fixed point

theorem with the operator F restricted to H and using the norm || - ||, on H to get that F’ has a unique
fixed point in H. But any fixed point of F' needs to be an element of H (since Il maps any vector to H).
Hence, we conclude that F' has a unique fixed point.

Thus, it remains to prove Part (i). For this, first let us prove that II is a non-expansion. Abbreviate
|1l (-, -)u) to || - || (respectively, to (-, -)). Note that ||u|? = (u,u). Note also that {u,v) = (v, u) and
u +— (u,v) is linear.



Take u € R®. Then,
ul|? = |ju — Tu + Hul|? = (v + Hu, v + u) = (v,v) + Tu, Tu) 4 2(v, Du)
= [0l + T + 2(v, TTu),

where we introduced v = u — ITu. The definition of I implies that ITu = vy for some § € R?, hence, by
Equation (8), (v, ITu) = 0. Therefore,

TTw|* = flul® = [|o]* < [Jull?, (10)
since ||lv||? > 0. Now, for u,v € R®, using that IT is a linear operator and Equation (10), we get
[TTu — || = [[TH(u — v)|| < [lu — o],

which shows that II is indeed a non-expansion.
Now, for T, we have for any u,v € RS that

Trv—Thu=rr +vPrv— (rx + vPru) = yPr(v — u) .

Hence, if we show that the map u — Pyu is a non-expansion, we will be done. Take any u € R®. We
have

1 Prul® = u(8)< > (Pﬂ')s,s’u(sl)>2

s€eS s'eS
<D uls) Y (Pr)sgu(s)
seS s'eS
= Z ( Z u(s)(PW)s’s/)uz(s’)
s'eS “seS
= > pu(s)Hu(s') (because 4 is a stationary distribution of Py)
s'eS
= ||ull?.

Above, the inequality follows from Jensen’s inequality, which states that for any convex function
f : R — R, any function u : S — R, and any probability vector (p(s))scs, f(> secsp(s)u(s)) <
S ses P(8) f(u(s)), which we apply here with f(z) = 22 and p(s') = (Pr)ss. 8 € S.

O

From this result, we also get the following result that tells us about the quality of the limit point vy, :

Theorem 4.2. Assume that G is non-singular. Then,
[TTv, — Uﬂ”u

oo, = velly < P

Proof. We have
vg, — UV = HTrvg, — Trvg
= (IITrvg, — UTrvy) + (Trvr — Trvg) .
Taking the norm of both sides and using the triangle inequality and that II7; is a y-contraction, we get
v, — vrllp < Vllve, — vzl + [[Hox — vzl

Solving the inequality gives the result. O


https://en.wikipedia.org/wiki/Jensen%27s_inequality

S The convergence of TD(0)
We can write the update equation of TD(0), given by Equation (1), as

Or+1 = O + ar f(0r) + cr(fe(0r) — f(0r)) + e (6:(0r) Xt — f2(01)) -

Here, the error term f;(6;) — f(0) is expected to be “well-behaved” when 6, does not grow too fast (or,
even better, if it remains bounded) since | f;(0) — f(0)| < C||p — pe||1(1 + ||0||2) for some C' > 0 and
since ||pt — gt ||1 — 0 exponentially fast. This term is sometimes called the “Markov drift” term as it arises
because piy # . The second error term, §;(6;) X¢ — fi(6;) is “noise-like” in the sense that conditioned on
the past, it is zero on expectation. As such, if the stepsize gets small enough quickly (i.e., ¥, a? < 00),
its effect “washes out” over time.

Thus, we find that the main affect on the evolution of §; comes from the update

Orr1 =0t + s f(0r) - (11)

As noted beforehand, we expect that if this iteration converges, it converges to 6, such that vy, is the fixed
point of II7T}.. Hence, assume now that such a fixed point exists and is unique.
Define e; = 6; — 6,.. Then,

err1 =¢er +arf(0+er).
Hence,

lecrall3 = ller + arf (0« +er)l3
= llecll3 + oZ || f (s + er)||3 + 200 (0, — 02) T f(6y)
< llecll3 + of || AT All2llec]|3 + 204(6: — 6.) T £(6r) (12)

where the last inequality follows by noting that on the one hand, f(6) is an affine linear function of 6:
f(0) = A + b for some b € R? and A € R?*?, while on the other hand, f(f,) = 0.* We will find that
for small enough stepsizes o the length of the error e; decreases if we can show that the last term can be
upper bounded by —c||e;||2 for some positive constant c.

To study this term, it will be useful to note that by Equation (3), f satisfies the identity

f(0) = X" D(Trvg — vg) . (13)

For the next lemma recall that for a symmetric positive definite matrix P € R%*? and z € R,
|z||% = =" Pz. We use this notation with G, which is clearly symmetric, and can also be seen to
be positive definite under the condition that it is non-singular.

Lemma 5.1. Assume that G is non-singular. Then, for any 6 € R?,

(0—6:)"£(8) < (v —1)]18 — 6.1 -

Proof. Pick 0 as in the statement. From Equation (13) we see that

(6 —60.)7 £(8) = (vg — ve,, Trvg — Vo), -



Recall that the Cauchy-Schwarz inequality holds true: for any u,v € R,
(u, ) < lullul[v]] - (“Cauchy-Schwarz”)
Hence,

(vg — vp,, Trvg — vg), = (Vg — vy, , Trvg — Vo, + Vg, — Vo) p
= (vg — vo., Trvg — v, ) — llvg, —vgl7,  (linearity of v — (-, v),, and [[0]|% = (v, v),.)
= (vg — vp,, vy — M Txvg, ), — ||ve, — ngi (see explanation at the end)
< llve — v, || w11 T7vg — HT e,

p— |lve, — v9||i (by Cauchy-Schwarz)
< llve = vo.llullve = v, | = Ilve. = voll (by Theorem 4.1)
= (v = 1)|jvg — vo, |l
= (v =116 — 6.1 -

Above, in the third equality, we used that on the one hand, by Theorem 4.1, vy, is the fixed point of 117,
which means that vy, = II1T, vy, , while on the other hand, for any # € R? and v € R®, by Equation (8),

<1)9, u>,u = <v9) Hu),u ,
while u — (u, v),, is linear, hence (vg — vy, , Trvg), = (Vg — vg, , 1T vp) . d

Since G is symmetric, positive definite, all its eigenvalues are real and positive. Let Ay, denote the
smallest of the eigenvalues of G. Note that A, > 0 since G is non-singular. It is known that for any
x € R,

l21& = 2" Gz > Awinll213 -
Combining the result of Lemma 5.1 and the above equation with Equation (12), gives us

lee1l3 < lleell3 + a7 || AT Allz|lecl| + 20e(y = 1)lec
< (14 20(y = D) Amin + o7 | AT All2) [[exl3 - (14)

This gives rise to the following theorem:

Theorem 5.2 (Convergence of Equation (11)). Assume that G is non-singular and let 0* be the
unique vector in R? such that vy« is the fixed point of I1Ty. Consider the sequence (0t)¢>0 defined
by Equation (11). Let oy = « fort > 0. Assuming that « is sufficiently small, 0; — 0, and the
convergence speed is geometric.

Proof. From Equation (14) we have ||e;+1]|2 < p||et||2 where p < 1 provided that
1+ 2a(y — D)Amin + 2 AT A5 < 1.
The above is equivalent to

a(2(y — 1) Amin + OszZleng) <0.



The largest root of the left-hand side (which is viewed as a quadratic function of «) is

~2(1 =) Amin

AT A

Hence, it suffices if 0 < o < avs. J

A slightly more complicated argument can show that if a; — 0 such that 72, oy = oo, we still have
975 — 9*

5.1 From TD(0) to fitted value iteration

Using Jy from the previous section, the mean update equation of TD(0), Equation (11), rewrites as
9,54,.1 = Ht - O[tVJQt (Gt) .

This can be recognized as taking a step in the direction of the negative gradient of the loss Jp, .
If we let H(ZH) = Ht(l) arJp, (0( )), Qt(O) = 6, and oy chosen to be not too big, then (0( ))Z>0 can be
shown to converge to the minimizer of Jy,:

lim 6( D= arg min Jy, (0) .

i—00

Thus, we can view TD(0) as an approximate, “optimistic” version of the method that updates the parameter
vector via

0;11 = arg min Jy, (6') . (15)
9/

Letting v; = vy, (= X0;), by the definition of IT and J,
Vt+1 = HTﬂUt . (16)

By Theorem 4.1, F' = IIT is a y-contraction with respect to || - ||,. Hence, the iteration Equation (16)
converges to the unique fixed point of F' under the assumption that GG is non-singular.

The algorithm given by Equation (15) is known as an instance of fitted value iteration (used for
evaluating a policy 7). The origin of the name is clear from Equation (16): Like value iteration, the
algorithm iterates using 7., except that the application of 77 is immediately followed by an application of
the projection operator IT, which maps T};v; back to the space H = {vg : 6 € R%}.

This can also be generalized to work with non-linear function approximation. The definition of Jy(6")
remains the same:

1
Jo(0') = 1 Trvg — verll?

except that now (vg)gcpa is allowed to be any parametric family of functions mapping S to the reals, such
as neural networks. The sample-based version of this method can be written as

Opi1 = argemlnz R, + g, (S}) — va(Sp))?,
t=1

where (S, R}, Sy) are such that (R}, S;) ~ p(-,|St, Ar) where Ay ~ 7(+|Sy), fort =1,...,n



Notes

1. We follow the convention that a Markov process with a countable state space is called a Markov chain.

2. The Markov chain whose state space is the set of natural numbers N and whose transition probabilities are defined via Ps 511 =1
for all s € N, does not have a stationary distribution. (Note that this Markov chain is not finite.)

3. Above we used V. to signify that the derivative whose transpose is the gradient, considered here, is with respect to €'

4. Here, || M]|2 is the induced 2-norm of matrix M: ||M |2 = sup,.|,,=1 |[Mz|2. The induced 2-norm has the property that
|| Mz||2 < ||M]||2||z||2. This, together with Cauchy-Schwarz, which states that |z " y|| < ||z||2]|y||2. gives the result.
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