
TD(0) with linear function approximation

Csaba Szepesvári
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On-policy TD(0), linearly approximated,
In reinforcement learning, it’s highly rated.

Updating weights with each new step,
Learning with bootstrapping, never to forget.

With every move, it seeks to improve,
Converging to some good groove.

Value estimation is the key,
To finding the best policy.

The algorithm’s simplicity,
Makes it a favorite of the RL community.

A poem to honor its efficacy,
On-policy TD(0) with linear function approximation, oh so mighty.

– ChatGPT with some edits from yours’ truly

1 The problem

LetM = (S,A,R, p) be a finite MDP, with S = {1, . . . , S}. Let π : S → M1(S) be a memoryless
stochastic policy. Let S0, A0, R1, S1, A1, R2, S2, . . . be a trajectory. We let P denote the probability
distribution over the sample space that holds S0, A0, R1, S1, A1, R2, S2, . . . that arises from following
π in M starting from a distribution µ ∈ M1(S), that is, S0 ∼ µ and for t ≥ 0, At ∼ π(·|St) and
(Rt+1, St+1) ∼ p(·, ·|St, At). Further, we assume we are given a map x : S → Rd, which we will call a
feature-map. For a vector θ ∈ Rd, let vθ : S → R be defined by

vθ(s) = θ>x(s) , s ∈ S.

Following the standard nomenclature in the literature, we call θ a weight vector (its components are used
in a weighted sum together with the components of the features to get a value). The problem considered
is to design an incremental update rule that generates a sequence of vectors (θt)t≥0 such that θt → θ∞ in
an appropriate sense and such that vθ∞ is close to vπ.
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2 TD(0) with linear function approximation

Given θ0 ∈ Rd, the feature map x, the above data, and a steps-size sequence (αt)t≥0 of non-negative
numbers, TD(0) generates a sequence of vectors (θt)t≥1 such that for all t ≥ 0,

θt+1 = θt + αtδt(θt)Xt , (1)

where we define Xt to be the feature vector of the state St visited at time t:

Xt = x(St) .

Further, we define δt(θ), the temporal difference error, or, in short, the TD-error, at time t when the weight
vector θ is used, as

δt(θ) = Rt+1 + γvθ(St+1)− vθ(St) .

3 Convergence

The sequence of states, (St)t≥0 forms a Markov chain1 and for any t, s, s′ ∈ S such that P(St = s) > 0,
P(St+1 = s′|St = s) = (Pπ)s,s′ where the transition matrix Pπ ∈ [0, 1]S×S is given by

(Pπ)s,s′ =
∑
a∈A

π(a|s)p(s′|s, a) .

A distribution µ ∈M1(S) is called a stationary distribution of Pπ, if for all s′ ∈ S it holds that∑
s∈S

µ(s)(Pπ)s,s′ = µ(s′) .

It follows that if the distribution of St is µ (that is, P(St = s) = µ(s), s ∈ S) then St+1 also has the
distribution µ. Every finite Markov chain has at least one stationary distribution.2 Thinking of µ as a
row-vector (which is how we, conventionally, think of distributions when we view them as vectors), the
condition that µ is a stationary distribution of Pπ takes the form

µPπ = µ.

We call a Markov chain irreducible if every state can be reached from every other state. If a Markov
chain is not irreducible, its state space can be partitioned into multiple non-empty parts such that states
within the same part can be reached from each other, but states belonging to different parts cannot be
reached from each other. A finite state space Markov chain that is not irreducible has more than one
stationary distribution.

We call a state s ∈ S periodic with period t ≥ 2 if for any n > 0, (Pnπ )s,s is non-zero if and only if n
is an integer multiple of t. Note that here (Pnπ )s,s′ gives the probability that the chain will get to state s′ in
n steps when it starts at state s. A Markov chain that has no periodic states is called aperiodic. A simple
example of a Markov chain that is not aperiodic is a chain with two states, where the transitions are such
that the chain alternates (deterministically) between the two states. The period of both states in this case is
two.
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A Markov chain that is both irreducible and aperiodic has nice properties. In particular, it has a
unique stationary distribution and no matter what the initial distribution of the states is, the distribution
µt(s) = P(St = s) for all s ∈ S, converges to the chain’s unique stationary distribution. Further, this
convergence is exponentially fast: ‖µt − µ‖ ≤ C exp(−ct) for all t ≥ 0, where c, C > 0 are fixed
positive constants.

The following theorem holds true:

Theorem 3.1 (Convergence of TD(0)). Assume that (St)t≥0 defines an irreducible and aperiodic Markov
chain with stationary distribution µ ∈M1(S). Assume further that αt ≥ 0,

∑
t αt =∞, and

∑
t α

2
t <∞

and that the matrix G =
∑
s∈S µ(s)x(s)x(s)> is non-singular. Then there exists θ∗ ∈ Rd such that

θt → θ∗ with probability one.

We note in passing that the condition that the Markov chain is aperiodic is for convenience. As we
shall see this helps with some of the arguments. However, the claim would continue to hold even without
this assumption. We will not prove this theorem, but will sketch the main reasons behind its convergence.
However, we first discuss the properties of θ∗.

4 On the limit point(s) of TD(0)

Let µt(s) = P(St = s), for t ≥ 0. Define

ft(θ) = E[δt(θ)Xt] .

A simple calculation then shows that

ft(θ) =
∑
s∈S

µt(s)x(s)((Tπvθ)(s)− vθ(s)) .

As noted earlier, if (Pπ) is irreducible and aperiodic, µt → µ, where µ is the unique stationary distribution
of Pπ. Hence, assuming that θt → θ∗ as t→∞, we expect that

f(θ∗) = 0 (2)

must hold, where

f(θ) =
∑
s∈S

µ(s)x(s)((Tπvθ)(s)− vθ(s)) . (3)

In the rest of this section we examine the consequences of Equation (2). For this, we will only need that µ
is a stationary distribution of Pπ, but we will not need to assume that Pπ is irreducible and aperiodic.

Define a family of functions (Jθ)θ∈Rd as follows:

Jθ(θ′) = 1
2‖Tπvθ − vθ

′‖2µ .

Here, for a function u : S → R we let

‖u‖2µ =
∑
s∈S

µ(s)u2(s)
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to be the µ-weighted squared two-norm of u. A simple calculation shows that

f(θ) = −∇Jθ(θ) . (4)

Indeed, fixing θ and letting u = Tπvθ, we have

∇Jθ(θ′) = 1
2∇θ

′
∑
s

µ(s)(vθ′(s)− u(s))2

=
∑
s

µ(s)(vθ′(s)− u(s))∇θ′vθ′(s)

=
∑
s

µ(s)(vθ′(s)− u(s))x(s) . (5)

Plugging back u = Tπvθ and substituting θ for θ′ gives the result.3

Now, from Equation (4) it follows that f(θ∗) = 0 implies that ∇Jθ∗(θ∗) = 0. On the other hand, for
θ, θ′ ∈ Rd,∇Jθ(θ′) = 0 implies that

θ′ ∈ arg min
θ′′

Jθ(θ′′) .

This holds because Jθ is a convex function of its argument and convex functions have the property that if
a point makes the function’s derivative (or gradient) zero then it must be a minimizer of the function. It
follows that

θ∗ ∈ arg min
θ′′

Jθ∗(θ′′) . (6)

Define the feature matrix X ∈ RS×d, so that the sth row of X is x>(s). Note that if we identify vθ with
a vector, as usual, the equality vθ = Xθ holds for any θ ∈ Rd.

In what follows, we assume that the d × d matrix G =
∑
s µ(s)x(s)x(s)> that was defined in

Theorem 3.1, and which can be equivalently defined via

G = X>DX,

is invertible. Here, D = diag(µ) is the diagonal matrix whose diagonal entries are given by the respective
elements of µ.

That G is non-singular implies that for any u ∈ RS the minimizer of

θ 7→ ‖u− vθ‖2µ

is uniquely defined (you might recall this argument, from a previous ML course, used while discussing
weighted least squares regression). This in turns allows us to define the projection operator Π : RS → RS ,
which is defined as follows:

Πu = X arg min
θ∈Rd

‖u− vθ‖2µ . (7)

An equivalent definition of Π is that it gives the unique v = Πu ∈ Rd such that

‖u− v‖2µ = min
θ∈Rd
‖u− vθ‖2µ .
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By some calculation, we can also see that

Πu = XG−1X>Du ,

and from this we see that Π is a linear operator. We can thus also identify Π with the matrix XG−1X>D.
From this, we also immediately see that for any θ ∈ Rd, u ∈ RS ,

〈vθ, u−Πu〉µ = 0 , (8)

where we use the notation

〈u, v〉µ =
∑
s∈S

µ(s)u(s)v(s) = u>Dv .

Note that Equation (8) is known as a Pythagorean identity: It states that vθ is orthogonal to u−Πu in the
geometry induced by 〈·, ·〉µ, where we call u and v orthogonal to each other in this geometry exactly when
〈u, v〉µ = 0. In words, this identity expresses the fact that the “error” u−Πu induced by approximating
u with Πu is orthogonal to any element of the subspace

H = {vθ : θ ∈ Rd} (9)

of RS .
Now, one can rewrite Equation (6) in terms of vθ∗ . Noting that θ∗ ∈ arg minθ′′ Jθ∗(θ′′), it follows

from the definition of Jθ∗ (that is, Jθ∗(θ′) = 1
2‖Tπvθ∗ − vθ′‖

2
µ) that

vθ∗ = ΠTπvθ∗ .

Hence, if TD(0) converges, it must converge to a fixed point of the composite operator ΠTπ.
The first question then is whether ΠTπ has a fixed point at all (and whether it has multiple fixed

points). As it turns out, the following holds:

Theorem 4.1. Assume that G is non-singular (so that Π is well-defined). Then, (i) ΠTπ is a ‖ · ‖µ
contraction with contraction factor γ, and (ii) it has a unique fixed point.

Proof. The proof of Part (i) consists of showing that the projection Π is a non-expansion, while Tπ is a
γ-contraction with respect to the chosen norm. Assume now that we have already proven Part (i). Now,
consider the vector space H defined by Equation (9). Let F = ΠTπ. Clearly, for any v ∈ H , Fv ∈ H .
Further, ‖ · ‖µ on H is a norm: Clearly, ‖ · ‖µ satisfies the triangle inequality, it is non-negative and
positive homogeneous, even when restricted to H . Further, for v ∈ H , it also holds that ‖v‖µ = 0 implies
that v = 0. Indeed, from v ∈ H it follows that v = vθ for some θ ∈ Rd. Hence, ‖v‖2µ = ‖vθ‖2µ = θ>Gθ.
This, if ‖v‖2µ = 0 then θ>Gθ = 0. Since G is non-singular, it is positive definitive, hence, θ>Gθ = 0
implies that θ = 0, which in turn implies that v = X0 = 0. Thus, we can apply Banach’s fixed point
theorem with the operator F restricted to H and using the norm ‖ · ‖µ on H to get that F has a unique
fixed point in H . But any fixed point of F needs to be an element of H (since Π maps any vector to H).
Hence, we conclude that F has a unique fixed point.

Thus, it remains to prove Part (i). For this, first let us prove that Π is a non-expansion. Abbreviate
‖ · ‖µ (〈·, ·〉µ) to ‖ · ‖ (respectively, to 〈·, ·〉). Note that ‖u‖2 = 〈u, u〉. Note also that 〈u, v〉 = 〈v, u〉 and
u 7→ 〈u, v〉 is linear.
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Take u ∈ RS . Then,

‖u‖2 = ‖u−Πu+ Πu‖2 = 〈v + Πu, v + Πu〉 = 〈v, v〉+ 〈Πu,Πu〉+ 2〈v,Πu〉
= ‖v‖2 + ‖Πu‖2 + 2〈v,Πu〉 ,

where we introduced v = u−Πu. The definition of Π implies that Πu = vθ for some θ ∈ Rd, hence, by
Equation (8), 〈v,Πu〉 = 0. Therefore,

‖Πu‖2 = ‖u‖2 − ‖v‖2 ≤ ‖u‖2 , (10)

since ‖v‖2 ≥ 0. Now, for u, v ∈ RS , using that Π is a linear operator and Equation (10), we get

‖Πu−Πv‖ = ‖Π(u− v)‖ ≤ ‖u− v‖ ,

which shows that Π is indeed a non-expansion.
Now, for Tπ, we have for any u, v ∈ RS that

Tπv − Tπu = rπ + γPπv − (rπ + γPπu) = γPπ(v − u) .

Hence, if we show that the map u 7→ Pπu is a non-expansion, we will be done. Take any u ∈ RS . We
have

‖Pπu‖2 =
∑
s∈S

µ(s)
( ∑
s′∈S

(Pπ)s,s′u(s′)
)2

≤
∑
s∈S

µ(s)
∑
s′∈S

(Pπ)s,s′u2(s′)

=
∑
s′∈S

(∑
s∈S

µ(s)(Pπ)s,s′
)
u2(s′)

=
∑
s′∈S

µ(s′)u2(s′) (because µ is a stationary distribution of Pπ)

= ‖u‖2 .

Above, the inequality follows from Jensen’s inequality, which states that for any convex function
f : R → R, any function u : S → R, and any probability vector (p(s))s∈S , f(

∑
s∈S p(s)u(s)) ≤∑

s∈S p(s)f(u(s)), which we apply here with f(x) = x2 and p(s′) = (Pπ)s,s′ , s′ ∈ S.

From this result, we also get the following result that tells us about the quality of the limit point vθ∗ :

Theorem 4.2. Assume that G is non-singular. Then,

‖vθ∗ − vπ‖µ ≤
‖Πvπ − vπ‖µ

1− γ .

Proof. We have

vθ∗ − vπ = ΠTπvθ∗ − Tπvπ
= (ΠTπvθ∗ −ΠTπvπ) + (ΠTπvπ − Tπvπ) .

Taking the norm of both sides and using the triangle inequality and that ΠTπ is a γ-contraction, we get

‖vθ∗ − vπ‖µ ≤ γ‖vθ∗ − vπ‖µ + ‖Πvπ − vπ‖µ .

Solving the inequality gives the result.
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5 The convergence of TD(0)

We can write the update equation of TD(0), given by Equation (1), as

θt+1 = θt + αtf(θt) + αt(ft(θt)− f(θt)) + αt(δt(θt)Xt − ft(θt)) .

Here, the error term ft(θt)− f(θ) is expected to be “well-behaved” when θt does not grow too fast (or,
even better, if it remains bounded) since |ft(θ)− f(θ)| ≤ C‖µ− µt‖1(1 + ‖θ‖2) for some C > 0 and
since ‖µ−µt‖1 → 0 exponentially fast. This term is sometimes called the “Markov drift” term as it arises
because µt 6= µ. The second error term, δt(θt)Xt − ft(θt) is “noise-like” in the sense that conditioned on
the past, it is zero on expectation. As such, if the stepsize gets small enough quickly (i.e.,

∑
t α

2
t <∞),

its effect “washes out” over time.
Thus, we find that the main affect on the evolution of θt comes from the update

θt+1 = θt + αtf(θt) . (11)

As noted beforehand, we expect that if this iteration converges, it converges to θ∗ such that vθ∗ is the fixed
point of ΠTπ. Hence, assume now that such a fixed point exists and is unique.

Define et = θt − θ∗. Then,

et+1 = et + αtf(θ∗ + et) .

Hence,

‖et+1‖22 = ‖et + αtf(θ∗ + et)‖22
= ‖et‖22 + α2

t ‖f(θ∗ + et)‖22 + 2αt(θt − θ∗)>f(θt)
≤ ‖et‖22 + α2

t ‖Ã>Ã‖2‖et‖22 + 2αt(θt − θ∗)>f(θt) , (12)

where the last inequality follows by noting that on the one hand, f(θ) is an affine linear function of θ:
f(θ) = Ãθ + b for some b ∈ Rd and Ã ∈ Rd×d, while on the other hand, f(θ∗) = 0.4 We will find that
for small enough stepsizes αt the length of the error et decreases if we can show that the last term can be
upper bounded by −c‖et‖22 for some positive constant c.

To study this term, it will be useful to note that by Equation (3), f satisfies the identity

f(θ) = X>D(Tπvθ − vθ) . (13)

For the next lemma recall that for a symmetric positive definite matrix P ∈ Rd×d and x ∈ Rd,
‖x‖2P = x>Px. We use this notation with G, which is clearly symmetric, and can also be seen to
be positive definite under the condition that it is non-singular.

Lemma 5.1. Assume that G is non-singular. Then, for any θ ∈ Rd,

(θ − θ∗)>f(θ) < (γ − 1)‖θ − θ∗‖2G .

Proof. Pick θ as in the statement. From Equation (13) we see that

(θ − θ∗)>f(θ) = 〈vθ − vθ∗ , Tπvθ − vθ〉µ .
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Recall that the Cauchy-Schwarz inequality holds true: for any u, v ∈ RS ,

〈u, v〉µ ≤ ‖u‖µ‖v‖µ . (“Cauchy-Schwarz”)

Hence,

〈vθ − vθ∗ , Tπvθ − vθ〉µ = 〈vθ − vθ∗ , Tπvθ − vθ∗ + vθ∗ − vθ〉µ
= 〈vθ − vθ∗ , Tπvθ − vθ∗〉µ − ‖vθ∗ − vθ‖2µ (linearity of v 7→ 〈·, v〉µ and ‖v‖2µ = 〈v, v〉µ)

= 〈vθ − vθ∗ ,ΠTπvθ −ΠTπvθ∗〉µ − ‖vθ∗ − vθ‖2µ (see explanation at the end)

≤ ‖vθ − vθ∗‖µ‖ΠTπvθ −ΠTπvθ∗‖µ − ‖vθ∗ − vθ‖2µ (by Cauchy-Schwarz)

≤ γ‖vθ − vθ∗‖µ‖vθ − vθ∗‖µ − ‖vθ∗ − vθ‖2µ (by Theorem 4.1)

= (γ − 1)‖vθ − vθ∗‖2µ
= (γ − 1)‖θ − θ∗‖2G .

Above, in the third equality, we used that on the one hand, by Theorem 4.1, vθ∗ is the fixed point of ΠTπ,
which means that vθ∗ = ΠTπvθ∗ , while on the other hand, for any θ ∈ Rd and u ∈ RS , by Equation (8),

〈vθ, u〉µ = 〈vθ,Πu〉µ ,

while u 7→ 〈u, v〉µ is linear, hence 〈vθ − vθ∗ , Tπvθ〉µ = 〈vθ − vθ∗ ,ΠTπvθ〉µ.

Since G is symmetric, positive definite, all its eigenvalues are real and positive. Let λmin denote the
smallest of the eigenvalues of G. Note that λmin > 0 since G is non-singular. It is known that for any
x ∈ Rd,

‖x‖2G = x>Gx ≥ λmin‖x‖22 .

Combining the result of Lemma 5.1 and the above equation with Equation (12), gives us

‖et+1‖22 ≤ ‖et‖22 + α2
t ‖Ã>Ã‖2‖et‖22 + 2αt(γ − 1)‖et‖2G

≤ (1 + 2αt(γ − 1)λmin + α2
t ‖Ã>Ã‖2) ‖et‖22 . (14)

This gives rise to the following theorem:

Theorem 5.2 (Convergence of Equation (11)). Assume that G is non-singular and let θ∗ be the
unique vector in Rd such that vθ∗ is the fixed point of ΠTπ. Consider the sequence (θt)t≥0 defined
by Equation (11). Let αt = α for t ≥ 0. Assuming that α is sufficiently small, θt → θ∗ and the
convergence speed is geometric.

Proof. From Equation (14) we have ‖et+1‖2 ≤ ρ‖et‖2 where ρ < 1 provided that

1 + 2α(γ − 1)λmin + α2‖Ã>Ã‖2 < 1 .

The above is equivalent to

α(2(γ − 1)λmin + α‖Ã>Ã‖2) < 0 .
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The largest root of the left-hand side (which is viewed as a quadratic function of α) is

α2 = 2(1− γ)λmin

‖Ã>Ã‖2
.

Hence, it suffices if 0 < α < α2.

A slightly more complicated argument can show that if αt → 0 such that
∑∞
t=0 αt =∞, we still have

θt → θ∗.

5.1 From TD(0) to fitted value iteration

Using Jθ from the previous section, the mean update equation of TD(0), Equation (11), rewrites as

θt+1 = θt − αt∇Jθt(θt) .

This can be recognized as taking a step in the direction of the negative gradient of the loss Jθt .
If we let θ(i+1)

t = θ
(i)
t − αtJθt(θ

(i)
t ), θ(0)

t = θt, and αt chosen to be not too big, then (θ(i)
t )i≥0 can be

shown to converge to the minimizer of Jθt :

lim
i→∞

θ
(i)
t = arg min

θ
Jθt(θ) .

Thus, we can view TD(0) as an approximate, “optimistic” version of the method that updates the parameter
vector via

θt+1 = arg min
θ′

Jθt(θ′) . (15)

Letting vt = vθt(= Xθt), by the definition of Π and Jθ,

vt+1 = ΠTπvt . (16)

By Theorem 4.1, F = ΠTπ is a γ-contraction with respect to ‖ · ‖µ. Hence, the iteration Equation (16)
converges to the unique fixed point of F under the assumption that G is non-singular.

The algorithm given by Equation (15) is known as an instance of fitted value iteration (used for
evaluating a policy π). The origin of the name is clear from Equation (16): Like value iteration, the
algorithm iterates using Tπ, except that the application of Tπ is immediately followed by an application of
the projection operator Π, which maps Tπvt back to the space H = {vθ : θ ∈ Rd}.

This can also be generalized to work with non-linear function approximation. The definition of Jθ(θ′)
remains the same:

Jθ(θ′) = 1
2‖Tπvθ − vθ

′‖2µ ,

except that now (vθ)θ∈Rd is allowed to be any parametric family of functions mapping S to the reals, such
as neural networks. The sample-based version of this method can be written as

θt+1 = arg min
θ

n∑
t=1

(R′t + γvθt(S′t)− vθ(St))2 ,

where (St, R′t, S′t) are such that (R′t, S′t) ∼ p(·, ·|St, At) where At ∼ π(·|St), for t = 1, . . . , n.
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Notes

1. We follow the convention that a Markov process with a countable state space is called a Markov chain.

2. The Markov chain whose state space is the set of natural numbers N and whose transition probabilities are defined via Ps,s+1 = 1
for all s ∈ N, does not have a stationary distribution. (Note that this Markov chain is not finite.)

3. Above we used∇θ′ to signify that the derivative whose transpose is the gradient, considered here, is with respect to θ′.

4. Here, ‖M‖2 is the induced 2-norm of matrix M : ‖M‖2 = supx:‖x‖2=1 ‖Mx‖2. The induced 2-norm has the property that
‖Mx‖2 ≤ ‖M‖2‖x‖2. This, together with Cauchy-Schwarz, which states that |x>y‖ ≤ ‖x‖2‖y‖2, gives the result.
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