
Is this an MDP? The case of “pick and place” (to be discussed after
practice quiz, 2nd week)

Csaba Szepesvári

Monday 6th February, 2023

Abstract

Some controlled stochastic processes are MDPs, some are not. We describe the pick and place
task, and then question whether various observation structures lead to an MDP at the observation level.

1 Preliminaries

This will work as follows: We will describe an MDP as usual by just following the definition of what MDPs
are. Then we’ll derive a POMDP (Partially Observable MDP) from it, by changing what information is
observable. The question then would be whether the observations themselves give rise to an MDP?

2 Pick and place

This is the simplest version of the problem: There is a robot, that has a position (start or goal), and a
gripper (hand) which can be either open or closed. The actions are opening and closing the gripper, and
moving the robot from one position to the other. Objects appear appear at the start position, which, if
grabbed by the robot and moved over to the goal position and dropped there, will result in a unit reward.
Depending on when and how the objects appear at the start position, we will have different “worlds”.

For the formal description, we use an intuitive formalism where states are treated as variables in a
programming language (e.g. Python) and have member variables that describe the various components
of the states. Imagine using a named tuple in Python. If s is a variable encoding the state, the member
variables are s.open, s.atstart, s.full, and s.objatstart, which all take on the values
of 1 (for true) or 0 (for false). Thus, the size of the state space is 24 = 16. The possible actions are
open, close, tostart, and tomove. The transition dynamics and the reward are given by the
following code:

from dataclasses import dataclass

from enum import Enum

import random

@dataclass

class State:

1

open: int = 0

atstart: int = 0

full: int = 0

objatstart: int = 0

Action = Enum('Action','OPEN CLOSE TOSTART TOEND')

def transition_w1(s,a):

reward = 1 if a==Action.OPEN and s.full==1 and s.atstart==0 else 0

snext = State()

snext.open = 1 if a==Action.OPEN \

else 0

snext.atstart = 1 if a==Action.TOSTART or \

(s.atstart==1 and a!=Action.TOEND) \

else 0

snext.full = 1 if \

(s.atstart==1 and s.objatstart==1 and a==Action.CLOSE) \

or (s.full==1 and a!=Action.OPEN) \

else 0

snext.objatstart = 1

return snext,reward

def transition_w2(s,a):

snext,reward = transition_w1(s,a)

objatstart computation..

the robot just picked up the object

if a==Action.CLOSE and s.objatstart==1 and \

s.atstart==1 and s.full==0:

replenish randomly

snext.objatstart = random.randint(0, 1)

dropping object at start

elif a==Action.OPEN and s.full==1 and s.atstart==1:

snext.objatstart = 1

else:
snext.objatstart = s.objatstart

return snext,reward

if __name__=="__main__":

s = State()

a = Action.OPEN

print(transition_w1(s,a))

2

print(transition_w2(s,a))

To be specific, there are two versions of the transition function: In “World 1” there is always an object
at the start position. In “World 2”, this is not true: If an object is picked up at the start position, a new
object appears there with probability 0.5. Otherwise, an object appears there in the next time step if there
was already an object there, or if an object is dropped there.

Now, consider a version of the problem, where the observation available on the state is just the
open-closed status and the position of the gripper. In another version, the observation available on the
state is as above (that is, the open-closed status and the position), and additionally the status of whether
the gripper is full. The following code shows these two versions:

from pp import *

@dataclass

class State1:
open: int = 0

atstart: int = 0

def __init__(self, s):

self.open = s.open

self.atstart = s.atstart

@dataclass

class State2:
open: int = 0

atstart: int = 0

full: int = 0

def __init__(self, s):

self.open = s.open

self.atstart = s.atstart

self.full = s.full

if __name__=="__main__":

s = State()

print(s)

print(State1(s))

print(State2(s))

The question is whether the controlled stochastic process where the agent has access only to the
restricted states (either State1(s) or State2(s)) and not the full state s, gives rise to a Markov
Decision Process? We thus have four different cases to consider:

3

1. Using State1 and World 1: Yes/No/It depends?

2. Using State1 and World 2: Yes/No/It depends?

3. Using State2 and World 1: Yes/No/It depends?

4. Using State2 and World 2: Yes/No/It depends?

And if the answer is yes, what is the transition probability kernel corresponding to the restricted states?

3 Solution

We now discuss the solutions to the four problems described above.

1. State1, World 1: Recall this observation is missing whether the hand is full, and whether there is
an object at the start position. The answer in this case is no.

This is because the “reward is not Markov”. Indeed, consider the case when the robot executes
the following sequence of actions: TOEND, OPEN, TOSTART, CLOSE, TOEND, OPEN.
This will lead to a reward of one: First, we empty the hand, then pick up an object
and then drop it. Further, the last observation incurred before taking the last action
is so that s.open=0, s.atstart=0. Now, consider the longer sequence of actions:
TOEND, OPEN, TOSTART, CLOSE, TOEND, OPEN, CLOSE, OPEN. Again, the last
observation incurred is s.open=0, s.atstart=0, the same as before. However, in this
case, deterministically, the reward received is zero.

Hence, the information about the history of interaction changes the distribution of the reward, and
as such, the controlled random process does not give rise to an MDP.1

2. State1, World 2: This is a bit more challenging, since moving the gripper to the start position
will not necessarily result in the robot picking up an object. Nevertheless, the answer stays the
same and almost the same example works (just prepend both action sequences with the first one,
TOEND, OPEN, TOSTART, CLOSE, TOEND, OPEN). The difference is that with the new
first action sequence an object is picked up at the start position with probability 0.5, which can be
shown using a case analysis (omitted). This in turn gives a reward with probability 0.5. Now, with
the new longer action sequence, zero reward is received at the end with probability one. The last
observations are the same in the two cases. Hence, the history “matters” and we do not have an
MDP and the answer is no again.

3. State2, World 1: This is the simple world and the case when the observation includes whether
the hand is full, but is missing whether there is an object at the start position.

This is a funny case: apart from the very first time step (t = 0), we are guaranteed that there is always
an object at the start position. Hence, if we are guaranteed that even at this time step there will be an
object at the start position, the information whether there is an object at the start position is redundant
and we could leave s.objatstart==1 out from the definition of transition_w1 and we
would still get the same outcomes for any policy. However, we cannot know this, hence, we need

4

to investigate the case when this is not the case. Thus, assume that initially s.objatstart==0.
Furthermore, assume that initially the robot is at the start position with its gripper open and with no
object in it. The initial observation is thus s so that s.open=0, s.atstart=1, s.full=0.
Take the action CLOSE. Then, for the next state snext, we will have snext.full==0. Now,
consider the action sequence CLOSE, CLOSE. The observation before the last close action is
still s.open=0, s.atstart=1, s.full=0. Yet, in this case, because we are in World
1, for the next state snext, we will have snext.full==1. Thus, in one case we get that
snext.full==0 and in the other case we get that snext.full==1, while keeping the last
observation and last action the same. Hence, this is not an MDP and the correct answer is it
depends.

(Note that, according to the transition_w1 function given before, the gripper will pick an
object, i.e. s.full==1, if the gripper is in the start position, there is an object in the start position,
and the action is to close the gripper. This happens irrespective of whether the gripper was open or
not in the previous timestep. Even though this transition dynamics is counter-intuitive, we use it
nevertheless due to its simplicity.)

4. State2, World 2: The same argument as for World 1 works except that in this case, this is not an
MDP unless the initial state is randomly chosen so that there is an object at the start position with
probability 0.5. Yet again, the correct answer is it depends.

4 Comments

A few comments are in order:

1. Some POMDPs are MDPs at the observation level.

This was the case using State2 as the observation in both worlds under some special conditions.
In World 1, we needed that the initial state was such that, either the robot was not at the start
position, or its hand was full, or there was an object at the start position. In World 2, it was sufficient
if the probability of having an object at the start position was 0.5 for the first time step. One expects
that there will be examples when we have an MDP at the observation level, but solving this MDP
will result in worse performance than solving the POMDP. Is this true? These two examples did not
show this.

2. Reversely, one does not need an MDP to get good performance.

In World 1, the optimal policy executes a fixed action sequence. Indeed, this world is deterministic.
An object always appears at the start, the hand can be moved to the start position, the object can be
picked up, delivered to the goal position, and dropped off there for a unit reward. This works even
in the absence of any information. The only possibly extra (redundant) step is moving the robot
hand to the start position. For long horizons, the opportunity cost of such redundant steps quickly
washes out.

If we modified the environment so that the success rate of holding or grabbing the object is only
0.5, performance in the case of lack of the information regarding whether the hand is full would

5

quickly deteriorate. The same holds for World 2, and State1, which lacks this information. In
this modified environment, sensing is crucial to maintain performance.

3. One can turn a problem into a Markov one by removing reward.

If reward was removed from World 1, even State1 would give rise to an MDP. But this is of little
comfort, as then all the policies would look equally good. This just underlines the importance of
including the reward in the description and talks about the dangers of solely worrying about the
state-dynamics with no concern for the reward.

4. One can turn a problem into a Markov one by changing the meaning of actions.

Indeed, if in the case of State2, World 1, we redefined the actions to be TOSTART, CLOSE (call
this compound action PICK) and TOEND, OPEN (call this compound action DROP), the problem
would become Markov again. After PICK, the robot is at the start position and has an object, with
the gripper closed. This is true regardless of the state (and hence, regardless of the last and previous
observations, or actions). Similarly, after DROP, the robot is at the end position, does not have the
object, the gripper is open. Furthermore, if the robot had the object, a reward is received. Again,
this is true regardless of the state (and hence, regardless of the last and previous observations, or
actions). The indeterminacy that was the result from not knowing whether at time t = 0 there
is an object at the start position is removed. Moreover, with the above action sequence, the only
relevant state variable to be kept around is whether the object is in the hand of the robot. With this
observation, the resulting problem is Markov. Thus, the state space is reduced. Furthermore, there
is almost no loss in performance.

If we were in World 2, how would we need to modify PICK to guarantee that there is (almost) no
loss of performance? You may assume that State2 is available.

5. The full history is always a Markov state, but occasionally one can get away with remembering less.

Consider the version of World 1 when the initial state is guaranteed to have an object at the start
position. In this case, using State1 does not lead to an MDP because it does not allow us to
predict the reward regardless of the history. But if we let the robot remember what it did before, the
reward becomes predictable! If the robot was moved to the start position, and object was picked
up there, and was not yet dropped and we are opening the hand, a reward will be incurred! This
looks complicated and a lot of things seem to matter. A simpler approach is to construct an internal
memory and used that for prediction. The internal memory in this case is to just encode whether
the hand is full! The amend_state function from the code below could be used to create this
extra bit inside the agent. This function would be called once an action is chosen to just compute
(predict) whether the hand will be full in the next time step. When the next time step information
arrives, this can then be amended by the pre-computed “is the hand full?” information.

from pp import *
from pp_obs import *

def amend_state(s: State1, a:Action):

'''

6

Takes an observation of type State1 and an action, and returns

whether the object is in the hand in the next time step

'''

return 1 if a==Action.CLOSE and s.atstart==1 else 0

if __name__=="__main__":

s = State(1,1,0,1) # open atstart full objatstart

a = Action.CLOSE

snext,r = transition_w1(s,a)

print("Hand full?", snext.full)

print("Hand predicted to be full?", amend_state(State1(s), a))

7

Notes

1. To reason formally, one can use the last proposition from this document.

8

https://szepi.github.io/cmput-365-w23/documents/notes/markov_property.pdf

	Preliminaries
	Pick and place
	Solution
	Comments

