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1 Definitions

Fix a finite MDP M = (S, A, R, p) and consider the continuing case with the discounted total expected
reward criterion with discount factor 0 ≤ γ < 1. Let Π be the set of all policies of M (we allow history
dependent policies, as well). We will use ML to denote the set of memoryless policies of M .

Definition 1.1 (Optimality). A policy π ∈ Π of M is said to be optimal in M , if for any other policy
π′ ∈ Π of M , it holds that

vπ(s) ≥ vπ′(s), for all s ∈ S . (1)

A shorthand notation for Equation (1) is1

vπ ≥ vπ′ .

Note that here π and π′ are arbitrary policies; they could also be history dependent.
Whether an optimal policy even exists in an MDP is not obvious at this stage: The requirement is that

a single policy should be at least as good as any other policy at any state. The answer to this question will
be positive, but this comes later. First, we reformulate optimality with the help of optimal value functions:

Definition 1.2 (The optimal value function). The optimal value function v∗ : S → R, of M is defined
via2

v∗(s) = sup
π∈Π

vπ(s) , s ∈ S .

It follows that for any policy π ∈ Π,

vπ ≤ v∗ . (2)

Note that v∗ takes on finite values. In particular, for any s ∈ S,

|v∗(s)| ≤ rmax
1 − γ

,

where rmax = max{|r′| : r′ ∈ R}.
The following is another immediate corollary to the above definitions.

Corollary 1.3. The following are equivalent:
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1. Policy π ∈ Π is optimal in M ;

2. vπ ≥ v∗;

3. vπ = v∗.

Proof. We show that (1) implies (2), which implies (3), which implies (1).
(1) ⇒ (2): Assume that π is optimal in M . Then, for any π′ ∈ Π and s ∈ S

vπ(s) ≥ vπ′(s) .

Taking the supremum of both sides with respect to π′ ∈ Π, we get

vπ(s) ≥ sup
π′∈Π

vπ′(s) = v∗(s) .

Since s ∈ S arbitrary, it follows that vπ ≥ v∗ holds.
(2) ⇒ (3): Assume that π ∈ Π is such that vπ ≥ v∗. We also have vπ ≤ v∗. Putting these together,
v∗ ≥ vπ ≥ v∗, hence all of them are equal.
(3) ⇒ (1): Assume that π ∈ Π is such that vπ = v∗. Let π′ ∈ Π any policy, s ∈ S any state. We know that
v∗(s) ≥ vπ′(s). Hence, vπ(s) = v∗(s) ≥ vπ′(s). Since π′ and s ∈ S were arbitrary, π is optimal.

Definition 1.4 (ε-optimality). Let ε > 0. A policy π ∈ Π is ε-optimal at state s ∈ S, if

vπ(s) ≥ v∗(s) − ε .

A policy π ∈ Π is ε-optimal, if it is simultaneously ε-optimal at every state, i.e.

vπ(s) ≥ v∗(s) − ε , s ∈ S .

While it is clear that for any state s ∈ S, there exists a policy π ∈ Π that is ε-optimal at state s ∈ S
(this follows from the definition of v∗), it is not obvious whether there exists any policy that is ε-optimal
simultaneously at all the states. Equivalently, it is not obvious whether the set of ε-optimal policies is
empty or not.

2 The optimality equation

Recall that H0 = S and for t ≥ 1, Ht = Ht−1 × A × R × S. We first need a claim, which extends the
Bellman equation for general policies:

Proposition 2.1. Let π ∈ Π, and in particular, π = (πt)t≥0, πt : Ht → M1(A). Then,

vπ(s) =
∑
a∈A

π0(a|s)

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)vπ(s,a,r′)(s′)

 , s ∈ S , (3)

where for any (s, a, r′) ∈ S × A × R, we define π(s,a,r′) = (π(s,a,r′)
t )t≥0 as follows:

π
(s,a,r′)
0 (s1) = π1(s, a, r′, s1) , s1 ∈ S ,

and for arbitrary t ≥ 1 and ht = (s1, a1, r2, s2, a2, . . . , at, rt+1, st+1) ∈ Ht,

π
(s,a,r′)
t (ht) = πt+1(s, a, r′, s1, a1, r2, s2, a2, . . . , at, rt+1, st+1) .
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Proof. The proof works essentially the same way as the proof of the Bellman equation worked for
memoryless policies and, as such, is left as an exercise.

The meaning of the result is as follows: π(s,a,r′) is the policy that will be followed after π is followed
through one transition from state s, where the action chosen by π happens to be a, and the reward that
is incurred through the transition is r′. Then, Equation (3) just states that the value of π at state s is
the sum of the expected immediate reward that is incurred while following π from s and the expected
total discounted value of policy π(s,A0,R1), where A0 represents the first (random) action taken and R1
represents the first (random) reward.

Theorem 2.2. We have

v∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s′)

 , s ∈ S . (4)

We call Equation (4) the Bellman optimality equation.

Proof. We first prove that v∗(s) is less than or equal to the right-hand side of Equation (4), and then we
prove that it is at least as large as this right-hand side. From these two, the equality then follows.

(Part 1:) Fix an arbitrary policy π ∈ Π and an arbitrary state s ∈ S. By Proposition 2.1
and Equation (2),

vπ(s) =
∑
a∈A

π0(a|s)

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)vπ(s,a,r′)(s′)


≤

∑
a∈A

π0(a|s)

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)

 .

Using the fact that π was arbitrary, we can take the supremum of both the sides, and the inequality will
still hold. (Note that for the right hand side, the supremum over π = (πt)t≥0 is equivalent to taking the
supremum over π0.) This means that

v∗(s) = sup
π

vπ(s) ≤ sup
π0

∑
a∈A

π0(a|s)

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)


= max

a∈A

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)

 .

Since s ∈ S was arbitrary, we are done with the first part of the proof.
(Part 2:) Let us now show that the inequality also holds in the reverse direction. First define, for each

state s ∈ S, π(s) = (π(s)
t )t≥0 to be a policy that is ε-optimal at state s. That is,

vπ(s)(s) ≥ v∗(s) − ε . (5)

Now, consider the policy π = (πt)t≥0, that in time step t = 0 and when the state is s ∈ S , takes an action
that maximizes the right-hand side of Equation (4), and then when it arrives at state s′ ∈ S (regardless of
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the reward incurred), it follows policy π(s′) for the remaining time steps:

π0(s) ∈ arg max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s′)

 , s ∈ S ,

πt(s0, a0, r1, s1, a1, . . . , rt, st) = π
(s1)
t−1 (s1, a1, . . . , rt, st) , t ≥ 1.

Note that for an arbitrary r′ ∈ R, s ∈ S, t ≥ 0, and ht = (s0, a0, r1, s1, . . . , rt, st) ∈ Ht,

π
(s,π0(s),r′)
t (ht) = π

(s0)
t (ht) .

(The above equation directly follows from the definitions of the policies π(s,π0(s),r′) and π.) From the
above equality, it follows that for an arbitrary state s′ ∈ S, Pδs′ ,π(s,π0(s),r′) = Pδs′ ,π(s′) (why?) and hence

v
π

(s,π0(s),r′)
t

(s′) = vπ(s′)(s′) .

Combining this with Proposition 2.1, we obtain

vπ(s) = r(s, π0(s)) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, π0(s))vπ(s′)(s′)

≥ r(s, π0(s)) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, π0(s))(v∗(s′) − ε) (by Equation (5))

=

r(s, π0(s)) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, π0(s))v∗(s′)

 − γε

= max
a∈A

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)

 − γε ,

where the last equality follows from the definition of π0. Combining this with Equation (2), i.e.
v∗(s) ≥ vπ(s), for all states s ∈ S and any policy π ∈ Π, we get

v∗(s) ≥ vπ(s) ≥ max
a∈A

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)

 − γε .

Since ε was arbitrary,

v∗(s) ≥ max
a∈A

r(s, a) + γ
∑

r′∈R,s′∈S
p(r′, s′|s, a)v∗(s′)


also holds, and the proof is finished by noting that s ∈ S was also arbitrary.

3 Operators, contractions, and fixed points

Note that v, vπ ∈ RS (i.e., they are functions mapping S to R). Now define T : RS → RS as follows: for
v ∈ RS , f = T (v) should satisfy

f(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′)

 , s ∈ S .
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Following the standard convention, we will write Tv instead of T (v). This removes some clutter. With
this, the above equality can be also written as

(Tv)(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′)

 , s ∈ S . (6)

Since T maps functions to functions, it is a “higher order function”. In math, such higher order functions
are often called operators and we will follow this convention. We collect all the above into a definition:

Definition 3.1 (Bellman optimality operator). The Bellman optimality operator underlying the finite
MDP M , equipped with the discounted total expected reward criterion, is the operator T : RS → RS that
satisfies Equation (6).

With the help of T , the result of Theorem 2.2 can be written in the shorter form

v∗ = Tv∗ .

Definition 3.2 (Fixed points). Given a function G whose range is the same as its domain, if there exists
an element x in the domain of G that satisfies G(x) = x, we say that x is a fixed point of G. The set of
fixed points of G is denoted by FIXED(G).

With this notation, we have v∗ ∈ FIXED(T ). Are there any other fixed points of T ?

Theorem 3.3. The optimal value function v∗ is the unique fixed point of T .

To prove this result, we introduce the notion of contractions and we recall the powerful contraction
mapping theorem. Let ∥ · ∥ be any norm on RS , where RS is treated as the |S|-dimensional Euclidean
space. Recall that RS is a complete space with ∥ · ∥.3

Definition 3.4 (Lipchitz maps). Let p, p′ ≥ 1 be natural numbers, ∥ · ∥ be a norm on Rp, and ∥ · ∥′ be a
norm on Rp′

. Then the map F : Rp → Rp′
is L-Lipschitz with respect to these norms, if

∥F (x) − F (y)∥′ ≤ L ∥x − y∥ , x, y ∈ Rp .

Note that we allow p ̸= p′ in this definition. This will be useful later.

Proposition 3.5. If F is Lipschitz, then it is also continuous.

Proof. To show continuity, it is enough to prove that for any xn → x (xn, x ∈ Rp), we also have
F (xn) → F (x). Recalling that pointwise and norm-wise convergence are the same thanks to the
finiteness of p′ > 0, it suffices to show that ∥F (xn) − F (x)∥ → 0 as n → ∞. But this is immediate from
the Lipschitzness of F :

∥F (xn) − F (x)∥′ ≤ L∥xn − x∥ → 0 as n → ∞.

Definition 3.6 (Contractions, non-expansions). A map F that is L-Lipschitz with L ≤ 1 is called a
non-expansion, while if L < 1, the map F is called a contraction. Any value 0 ≤ α < 1 such that F is
α-Lipschitz is called a contraction factor of F .
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Theorem 3.7 (Contraction mapping theorem). Let S be finite. Let F : RS → RS and ∥ · ∥ be an arbitrary
norm on RS . Assume that F is a contraction with the contraction factor α ∈ [0, 1). Then, FIXED(F ) has
a unique element and this element is the limit of the sequence xn+1 = F (xn), where x0 ∈ RS is arbitrary
and n ≥ 0. Finally, for n ≥ 0 it holds that ∥xn − x∥ ≤ αn∥x0 − x∥.

This result is also known as Banach’s fixed point theorem.

Proof. Let us first show that (xn)n≥0 converges to some vector that is the fixed point of F . For this, we
show that it is a Cauchy sequence, i.e., a sequence of decreasing oscillations, since as it is well known,
Cauchy sequences in finite dimensional sequences have a limit.4 Thus, we need to show that

lim
n→∞

sup
m≥n

∥xm − xn∥ = 0 .

Fix m ≥ n ≥ 0. By the triangle inequality,

∥xm − xn∥ =
∥∥(xm − xm−1) + (xm−1 − xm−2) + · · · + (xn+1 − xn)

∥∥
≤ ∥xm − xm−1∥ + ∥xm−1 − xm−2∥ + · · · + ∥xn+1 − xn∥ .

Now, for i ≥ 1, xi+1 − xi = F (xi) − F (xi−1). Hence, ∥xi+1 − xi∥ = ∥F (xi) − F (xi−1)∥ ≤
α∥xi − xi−1∥ ≤ · · · ≤ αi∥x1 − x0∥. Thus,

∥xm − xn∥ ≤ (αm−1 + · · · + αn)∥x1 − x0∥ ≤ αn

1 − α
∥x1 − x0∥ .

Since m was arbitrary, it follows that we also have

sup
m≥n

∥xm − xn∥ ≤ αn

1 − α
∥x1 − x0∥ → 0, as n → ∞ .

This implies that xn is convergent. Let x ∈ RS be its limit.
We now show that x ∈ FIXED(F ). For this, note that F (xn) → F (x) as n → ∞ because F is

continuous (cf. Proposition 3.5). But we also have F (xn) = xn+1 → x as n → ∞. Hence, x = F (x),
proving that x ∈ FIXED(F ).

Next, we show that FIXED(F ) has a single element. Indeed, for any x, x′ ∈ FIXED(F ),

∥x − x′∥ = ∥F (x) − F (x′)∥ ≤ α∥x − x′∥ .

Reordering the above equation and dividing by (1−α) > 0, we get that ∥x−x′∥ ≤ 0. Since ∥x−x′∥ ≥ 0
also holds, ∥x − x′∥ = 0. Hence x = x′ by the properties of norms.

For the last part of the theorem note that for n ≥ 1,

∥xn − x∥ = ∥F (xn−1) − F (x)∥ ≤ α∥xn−1 − x∥ ≤ · · · ≤ αn∥x0 − x∥ .

The bound ∥xn − x∥ ≤ αn∥x0 − x∥ reassures us that iteratively applying F gives rise to a sequence
that rapidly converges to the unique fixed point of F , with the errors decreasing from the initial error
∥x0 − x∥ at a geometric rate. This suggest that if we ever need a good approximation to a fixed point
to some contraction map F , we should start from some x0, hopefully, not too far from x and then keep
applying F in an iterative fashion. But since x is unknown, if we want to know how far xn is from x, the
above bound is not useful. But we can use that xn is getting close to x to get a bound that is free of x:
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Proposition 3.8. For the setting of the contraction mapping theorem, ∥xn − x∥ ≤ αn

1−αn ∥x0 − xn∥.

Note that the above bound is almost as good as the bound ∥xn − x∥ ≤ αn∥x0 − x∥. This is because
the term 1/(1 − αn) converges rapidly (from above) to 1. In particular, 1/(1 − αn) ≤ 1 + 2αn assuming
that n is large enough so that αn ≤ 0.5.

Proof. We already know that ∥xn − x∥ ≤ αn∥x0 − x∥. We also have

∥x0 − x∥ ≤ ∥x0 − xn∥ + ∥xn − x∥ .

Hence,

∥xn − x∥ ≤ αn∥x0 − xn∥ + αn∥xn − x∥ .

Reordering and solving for ∥xn − x∥ gives

∥xn − x∥ ≤ αn

1 − αn
∥x0 − xn∥ .

An alternative to the previous result is as follows:

Proposition 3.9. We have

∥xn − x∥ ≤ ∥xn − xn+1∥
1 − α

≤ αn

1 − α
∥x1 − x0∥ .

Proof. We have ∥xn − x∥ = ∥xn − F (x)∥ ≤ ∥xn − F (xn)∥ + ∥F (xn) − F (x)∥ ≤ ∥xn − F (xn)∥ +
α∥xn − x∥. Reordering and solving for ∥xn − x∥ gives the first bound. The second follows by noting
that ∥xn − xn+1∥ ≤ αn∥x0 − x1∥.

The final tool that will be useful is the following:

Proposition 3.10. Let p, p′, p′′ ≥ 1 be three natural numbers, and F : Rp → Rp′
and G : Rp′ → Rp′′

be two functions. Fix the norms ∥ · ∥, ∥ · ∥′, and ∥ · ∥′′′ on Rp, Rp′
, and Rp′′

, respectively. Assume that
for some L, L′ > 0, F is L-Lipschitz and G is L′-Lipschitz with respect to the respective norms. Then
G ◦ F : Rp → Rp′′

is LL′-Lipschitz.5

Proof. Take x, y ∈ Rp. Then,

∥G(F (x)) − G(F (y))∥ ≤ L′∥F (x) − F (y)∥ (G is L′-Lipschitz)

≤ LL′∥x − y)∥ . (F is ′-Lipschitz)

With these tools, we are ready to give the proof of Theorem 3.3.
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Proof of Theorem 3.3. We want to show that FIXED(T ) = {v∗}. By the contraction mapping theorem,
it suffices to show that T is a contraction. For this, we need to choose a norm first. Let us choose the
maximum norm: ∥v∥ = maxi |vi|.

Also, we view T as the composition of a number of maps. These are P : RS → RS×A defined using

(Pv)(s, a) =
∑
s′∈S

p(s′|s, a)v(s′) ,

the map L : RS×A → RS×A defined by

(Lq)(s, a) = r(s, a) + γq(s, a) ,

and the map M : RS×A → RS , defined by

(Mq)(s) = max
a∈A

q(s, a) .

It is easy to see6 that T = M ◦ L ◦ P and also that P is a non-expansion, L is a γ-contraction, and M is a
non-expansion. Hence, by Proposition 3.10, T is a γ-contraction. Then, the contraction mapping theorem
implies that T has a unique fixed-point.

During this proof, we also proved the following:

Proposition 3.11. T is a γ-contraction with respect to the maximum norm (in short, T is a max-norm
contraction).

Next, fix a memoryless policy π ∈ ML and define the operator Tπ : RS → RS using

(Tπv)(s) =
∑
a∈A

π(a|s)

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′)

 , s ∈ S .

Then, we also have the following:

Proposition 3.12. For any memoryless policy π ∈ ML, the operator Tπ is a max-norm contraction with
the contraction factor γ, and its unique fixed point is vπ.

Proof. That vπ is the fixed point of Tπ has been shown before. That Tπ is a max-norm contraction with
contraction factor γ follows as the proof of the previous result. (Alternatively, this can be a corollary of
the previous proposition that T is a contraction. To see this, define a new MDP M ′ = (S, {1}, R, p′)
with p′(r′, s′|s, 1) =

∑
a∈A π(a|s)p(r′, s′|s, a). Now, the Bellman optimality operator T ′ in this MDP is

the same as Tπ, i.e. T ′ = Tπ. Since T ′ is a contraction with contraction factor γ, it follows that Tπ is a
contraction with the same contraction factor).

4 The fundamental theorem of MDPs

Theorem 4.1 (Fundamental theorem). If π ∈ ML is a memoryless policy such that

π(s) ∈ arg max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v∗(s′)


then π is an optimal policy of M , i.e.,

vπ = v∗ .
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Proof. Take a policy π as in the theorem statement. By definition, we have Tπv∗ = Tv∗ and by
Theorem 2.2, Tv∗ = v∗. Hence, Tπv∗ = v∗. Let k ≥ 0. It follows that T k+1

π v∗ = T k
π v∗ = T k−1

π v∗ =
· · · = Tπv∗ = v∗. Letting k → ∞, by Proposition 3.12, we have that T k+1

π v∗ → vπ. Hence, vπ = v∗,
which was the result to be proven.

The result is called the fundamental theorem, as it allows us to restrict the search for optimal policies
to the set of memoryless policies, which is a much more restricted set than the set of all policies.

Definition 4.2 (Greedy policy). Let v ∈ RS . Then a (memoryless) policy π is called greedy with respect
to v, if

π(s) ∈ arg max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(s′)

 .

Alternatively, π is greedy with respect to v if Tπv = Tv.

With this definition, what the fundamental theorem states is that any policy that is greedy with respect
to v∗ is optimal.
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Notes

1. Generally, for functions f, g : D → R, we write f ≤ g, if f(x) ≤ g(x) for all x ∈ D.

2. Recall that for A ⊂ R, sup A means the unique real number that is the smallest among all the “upper bounds” on A. It is a
defining property of the real numbers that this least upper bound exists and is unique. If the set A was closed (i.e., it contains the
limit points of any sequence that takes values in A), then sup A = max A (recall that max A is simply the largest element of
A). But for an open set A, such as A = [a, b) for some a < b (i.e., A is an interval open from above), max A does not exist,
while sup A = b.

3. Without the loss of generality, we may assume that S = [S] := {1, 2, . . . , S}, where S = |S|. We can then identify v ∈ RS with
the vector (v(1), . . . , v(S))⊤ ∈ RS . Here, we use u⊤ to denote the transpose of u, which is needed because (v(1), . . . , v(S)),
by default, denotes a row-vector, while, by convention, elements of RS are column vectors. Recall some vector space operations:
Adding vectors, multiplying vectors by a scalar constant (a real valued constant to be precise), and finally multiplying vectors by
matrices. Also recall that 0 ∈ RS denotes the all-zero vector (0, 0, . . . , 0)⊤. Further, recall that a norm ∥ · ∥ on the Euclidean
space RS is an RS → [0, ∞) function such that for any u, v ∈ RS and α ∈ R, the following hold: (i) ∥v∥ = 0 if and only if
v = 0; (ii) ∥αv∥ = |α|∥v∥ (positive homogeneity); and (iii) ∥u + v∥ ≤ ∥u∥ + ∥v∥ (triangle inequality). Examples of norms
are the maximum norm, ∥v∥ = maxi∈[S] |vi|, the p-norms, ∥v∥p = (

∑
i∈[S] |vi|p)1/p, etc. We will often use the maximum

norm here. Recall that for xn ∈ RS (for n ≥ 0) and some x ∈ RS , xn → x if (xn)i → (x)i holds for all i ∈ S (here, (y)i

denotes the ith component of the vector y). Sometimes, this mode of convergence is called componentwise. (Sometimes it is
also called pointwise.) These terminologies (componentwise or pointwise convergence) are mainly for distinguishing this notion
of convergence from other notions of convergence, such as convergence in norm: We say that xn converges to x in norm ∥ · ∥, if
∥xn − x∥ → 0. Thanks to S being finite, the two modes of convergence are the same.

4. It is known that RS is a complete vector space, regardless the norm chosen. This means that any sequence (vn)n≥0 taking values
in RS that is Cauchy in the sense that limn→∞ supm≥n ∥vn − vm∥ → 0, it holds that (vn)n≥0 converges to some element v of
RS . Let us call εn := supm≥n ∥vn − vm∥ the oscillation of (vt)t≥0 after t = n. With this terminology we see that a sequence
is Cauchy if its oscillations (εn)n≥0 are vanishing (which is another way of saying that they are converging to zero).

5. The map G ◦ F is defined as the composition of F and G: First, F is applied to some input and then G is applied on the value
returned by F . Formally, (G ◦ F )(x) = G(F (x)), for any x ∈ Rp.

6. That P is a nonexpansion can be proven as follows: Let v, v′ ∈ RS . Then ∥P v − P v′∥ = ∥P (v − v′)∥. Now, for d = v − v′,
we have |(P d)(s, a)| = |

∑
s′∈S p(s′|s, a)d(s′)| ≤

∑
s′∈S p(s′|s, a)|d(s′)| ≤

∑
s′∈S p(s′|s, a) maxs′′∈S |d(s′′)| =

∥d∥
∑

s′∈S p(s′|s, a) = ∥d∥. Taking the maximum over (s, a) ∈ S × A, we get ∥P d∥ ≤ ∥d∥.

That L is a γ-contraction is left as an exercise. That M is a nonexpansion holds because of the following argument: Let
q, q′ ∈ RS×A. Fix s ∈ S. Assume, without the loss of generality, that (Mq)(s) ≥ (Mq′)(s). Let a0 ∈ A be such that
(Mq)(s) = q(s, a0). Then, 0 ≤ |(Mq)(s) − (Mq′)(s)| = (Mq)(s) − (Mq′)(s) = maxa∈A q(s, a) − maxa∈A q′(s, a) ≤
maxa∈A q(s, a) − q′(s, a0) = q(s, a0) − q′(s, a0) = |q(s, a0) − q′(s, a0)| ≤ maxa∈A |q(s, a) − q′(s, a)| ≤ ∥q − q′∥. Since
s ∈ S was arbitrary, ∥Mq − Mq′∥ ≤ ∥q − q′∥, finishing the proof.
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