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1 Definitions

As usual, for a set U , M1(U) stands for the set of all probability measures (or, probability distributions)
over U . Let U be finite. Then any such probability measure P ∈ M1(U) is just a map from all possible
subsets of U to [0, 1]. In this case P is also uniquely identified with the probabilities it assigns to singletons
of U and we, in fact, let p denote the corresponding map, which does map U to [0, 1]. The connection is
that for any u ∈ U , p(u) = P ({u}). We call p the probability mass function (pmf) underlying P . Since
pmfs and probability measures have a one-to-one correspondence, oftentimes we use pmfs instead of
probability measures and will abuse the notation by writing p ∈ M1(U), where p is a pmf. If we have a
map f : U → M1(V ) for finite sets U and V , we further abuse the notation by writing f(v|u) instead of
(f(u))(v). (Most notably, we do this for the transition dynamics function p and the policy π.)

Definition 1.1 (Finite MDP). A finite MDP is given by the tuple M = (S, A, R, p), where S is the finite
state space, A is the finite action space, R is the finite set of possible rewards, and p : S×A → M1(R×S)
is the transition dynamics function. In particular, p(r′, s′|s, a) is the probability of seeing reward r′ ∈ R
and next state s′ ∈ S given that action a ∈ A is taken in state s ∈ S.1

Definition 1.2 (Histories and policies). For t ≥ 0, the set of t-step histories is defined recursively as
follows: H0 = S and for t ≥ 1, Ht = Ht−1 × A × R × S . A policy of a finite MDP M = (S, A, R, p) is
π = (πt)t≥0, where πt : Ht → M1(A) is the map used at time t. In words, for h ∈ Ht, a ∈ A, πt(a|h) is
the probability that action a is taken when the history is h at time t. For t ≥ 1 we let H−S

t = Ht−1×A×R
(“missing the last state”), and for t ≥ 0 we let H+A

t = Ht × A (“appending an action”).

Definition 1.3 (Memoryless policy). If π is a policy such that for all t ≥ 0, πt only depends on the last
state in the history, then π is called a memoryless policy. For such policies, one only needs to specify
π0 : S → M1(A), as opposed to the sequence (πt)t≥0. And so by abusing language, any map from states
to distributions over actions will be treated as a memoryless policy.

Definition 1.4 (Probability measures induced by using a policy in an MDP). Fix a finite MDP
M = (S, A, R, p), a policy π of this MDP, and a distribution µ ∈ M1(S). Then, the probability measure—
induced by using π in M and µ as the initial state distribution—is a probability distribution P over some
sample space Ω, such that there are random variables S0, S1, . . . : Ω → S, A0, A1, . . . : Ω → A,
and R1, R2, . . . : Ω → R, for which the following holds for every t ≥ 0 and every history
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ht = (s0, a0, r1, s1, a1, . . . , at−1, rt, st) ∈ Ht:

P(Ht = ht) = µ(s0) · π0(a0|s0) · p(r1, s1|s0, a0)
· π1(a1|s0, a0, r1, s1) · p(r2, s2|s1, a1)
...

· πt−1(at−1|s0, a0, . . . , st−1) · p(rt, st|st−1, at−1) .

When the dependence of P on µ and π is important, we write Pµ,π to signify this dependence. To simplify
notation, we also use P, Pµ and Pπ, when one, or both of these objects are clear from the context.

A reasonable question to ask is whether the above definition is even a correct one? Does a distribution
P (and a corresponding sample space Ω) with the above properties exist? The answer is yes and it is
the Kolmogorov’s extension theorem which guarantees this. The next question is whether P and Ω are
uniquely defined? Or are there distinct probability measures, P and P′ (and corresponding sample spaces),
that satisfy the above definition? The answer is that P and Ω are not uniquely defined. Once we have a
pair (Ω,P) that satisfies the above definition, we can always construct some P′ and Ω′ such that P′ and Ω′

will also satisfy the definition with appropriate sequences of random variables, S′
0, S′

1, . . . , A′
0, A′

1, . . .

and R′
1, R′

2, . . . , over Ω′ (for instance, consider Ω′ = Ω × {1}). However, that (Ω,P) are not uniquely
defined does not matter, as in every calculation involving P (e.g., definition of value functions), only the
properties of P mentioned in Definition 1.4 will be used.

Proposition 1.5. The stochastic process S0, A0, R1, S1, A1, R2, S2, A2, . . . under the the probability
distribution Pµ,π satisfies the Markov property, regardless of the choice of µ and π.

We will also use Eµ,π to denote the expectation underlying Pµ,π. When µ is clear from the context,
we also use just Eπ, etc.

Some important properties of Pµ,π are given as follows.

Proposition 1.6. The probability measure P := Pµ,π satisfies the following properties: For any t ≥ 0,
ht = (s0, a0, r1, s1, a1, . . . , rt, st) ∈ Ht, r′ ∈ R, and s′ ∈ S, it holds that

P(S0 = s0) = µ(s0) , (1)

P(At = at|Ht = ht) = πt(at|ht) , (2)

P(Rt+1 = r′, St+1 = s′|Ht = ht, At = at) = p(r′, s′|st, at) . (3)

Further, if some probability measure P satisfies the above properties then it also satisfies the properties
used in Definition 1.4.

Note that Equation (3), given above, is what we recognize as the Markov property.
The following proposition will be useful in the future. This proposition will allow us to use the same

sequence of random variables to denote states, actions, and rewards regardless of the initial distribution or
the policy used.

Proposition 1.7 (Single sample space). There exist a sample space Ω and random variables S0, S1, . . . :
Ω → S, A0, A1, . . . : Ω → A, and R1, R2, . . . : Ω → R such that for any policy π and initial state
distribution µ ∈ M1(S), there exists a probability measure Pµ,π ∈ M1(Ω) that satisfies Definition 1.4.
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2 Value functions

We will use the expected total discounted reward as the criterion to evaluate policies. Let 0 ≤ γ < 1 be
the discount factor used.

Definition 2.1 (Value function of a policy). Fix an arbitrary policy π. The value function vπ : S → R of
π is defined by

vπ(s) = Eδs,π

∑
t≥0

γtRt+1

 , s ∈ S , (4)

where δs ∈ M1(S) is the “Dirac” probability measure on S with a point-mass at s. In particular, if we
take δs to be the pmf of this measure then

δs(s′) = I{s = s′}, for all s′ ∈ S.

In words, vπ(s) is the expected total discounted reward incurred by the agent when it follows policy π

from state s.
Is vπ(s) well-defined? Since we are in a finite MDP, the infinite sum (also known as the return)∑

t≥0 γtRt+1 is well-defined: Indeed, defining

fn =
n∑

t=0
γtRt+1 ,

we can reason that fn is a convergent sequence of functions; one can use the Cauchy criterion to show this.
Thus, the sequence of functions (fn)n converges to some function f , which we denote by

∑
t≥0 γtRt+1.

That the expectation of f exists follows from Lebesgue’s dominated convergence theorem. To use this
theorem, we need to show that there exists a function g : Ω → R such that |fn| ≤ g for all n ≥ 0, and
that Eδs,π[g] exists. Indeed, g = rmax/(1 − γ) can be shown to be such a function where

rmax = max{|r| : r ∈ R} .

Therefore, Lebesgue’s dominated convergence theorem guarantees that Eδs,π[f ] exists and

lim
n→∞

Eδs,π[fn] → Eδs,π[f ] .

Note that here

Eδs,π[fn] = Eδs,π

[
n∑

t=0
γtRt+1

]
=

n∑
t=0

γt Eδs,π [Rt+1] ,

where the last equality follows from the linearity of expectation (which can be used because Eδs,π [Rt+1]
is well-defined). It then follows from the above argument that

vπ(s) = lim
n→∞

n∑
t=0

γt Eδs,π [Rt+1] .
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Again, following the standard convention, the limit on the right-hand side is denoted by∑∞
t=0 γt Eδs,π [Rt+1]. Hence,

vπ(s) =
∞∑

t=0
γt Eδs,π [Rt+1] . (5)

Note that this could also be used as the definition of vπ(s) (this expression differs from the definition of
vπ in the sense that here the infinite sum is moved outside of the expectation). In fact, if we started with
this definition, we would have spared the need for using Lebesgue’s dominated convergence theorem to
argue that vπ is well-defined (why?).

Definition 2.2 (Immediate reward function). Given a finite MDP M , the immediate reward function
r : S × A → R of M is defined using2

r(s, a) =
∑

r′∈R,s′∈S
r′ · p(r′, s′|s, a) .

Sometimes the following is convenient:

Proposition 2.3. For any policy π,

vπ(s) = Eδs,π

[∑
t≥0

γt r(St, At)
]

=
∑
t≥0

γt Eδs,π

[
r(St, At)

]
, s ∈ S .

Proof. From Equation (5), we have

vπ(s) =
∞∑

t=0
γt Eδs,π [Rt+1] .

Now, by the property of conditional expectations,3

Eδs,π [Rt+1] =
∑

s∈S,a∈A
Eδs,π [Rt+1 | St = s, At = a]Pδs,π(St = s, At = a) .

Further, recall that for fixed (s, a) ∈ S × A,

Eδs,π [Rt+1 | St = s, At = a] =
∑

r′∈R
r′ · Pδs,π(Rt+1 = r′ | St = s, At = a).

Let (s, a) be such that Pδs,π(St = s, At = a) > 0. Hence, if we prove that

Pδs,π(Rt+1 = r′ | St = s, At = a) =
∑
s′∈S

p(r′, s′|s, a) , (6)

it follows that

Eδs,π [Rt+1 | St = s, At = a] = r(s, a) ,
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and thus,

Eδs,π [Rt+1] =
∑
s,a

r(s, a) · Pδs,π(St = s, At = a) = Eδs,π [r(St, At)] .

It remains to show that Equation (6) holds. For this, recalling that Pδs,π(St = s, At = a) > 0, we get

Pδs,π(Rt+1 = r′ | St = s, At = a)

=
∑

h∈H−S
t ,s′∈S Pδs,π(Rt+1 = r′, St+1 = s′, St = s, At = a, H−S

t = h)
Pδs,π(St = s, At = a) ,

where we define H−S
t = (S0, A0, R1, S1, A1, R2, S2, . . . , At−1, Rt). Let’s calculate the numerator:∑

h∈H−S
t ,s′∈S

Pδs,π(Rt+1 = r′, St+1 = s′, St = s, At = a, H−S
t = h)

=
∑

h∈H−S
t ,s′∈S

(
Pδs,π(Rt+1 = r′, St+1 = s′|St = s, At = a, H−S

t = h)

× Pδs,π(St = s, At = a, H−S
t = h)

)
=

∑
h∈H−S

t ,s′∈S

p(r′, s′|s, a) · Pδs,π(St = s, At = a, H−S
t = h) (by Equation (3))

=
( ∑

h∈H−S
t

Pδs,π(St = s, At = a, H−S
t = h)

)( ∑
s′∈S

p(r′, s′|s, a)
)

= Pδs,π(St = s, At = a)
∑
s′∈S

p(r′, s′|s, a) . (by the law of total probability)

Plugging this back in, we get

Pδs,π(Rt+1 = r′ | St = s, At = a)

= (((((((((((
Pδs,π(St = s, At = a)

∑
s′∈S p(r′, s′|s, a)

(((((((((((
Pδs,π(St = s, At = a)

=
∑
s′∈S

p(r′, s′|s, a) .

3 Bellman equation for policy evaluation

Define

p(s′|s, a) =
∑

r′∈R
p(r′, s′|s, a) .

Proposition 3.1 (Bellman equation for policy evaluation). Let π : S → M1(A) be a memoryless policy.
Then, the following holds:

vπ(s) =
∑
a∈A

π(a|s)

r(s, a) + γ
∑
s′∈S

p(s′|s, a)vπ(s′)

 . (7)
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Proof. Fix π, the sample space Ω, and the stochastic process S0, A0, R1, S1, A1, . . . on it from
Proposition 1.7. Further, for all s ∈ S, let Pδs,π ∈ M1(Ω) be the probability measure from the
same proposition.

Fix t ≥ 1 and (s0, a0, . . . , st, at) ∈ (S × A)t+1. Assume that Pδs0 ,π(A0 = a0, S1 = s1) > 0. We
claim that the following holds:

Pδs0 ,π(S1 = s1, A1 = a1, S2 = s2, A2 = a2, . . . , St = st, At = at | A0 = a0, S1 = s1)

= Pδs1 ,π(S0 = s1, A0 = a1, S1 = s2, A1 = a2, . . . , St−1 = st, At−1 = at) . (8)

In other words, under the memoryless policy π, “the state-action distribution from timestep t = 1
conditioned on starting from state s0, choosing action a0, and then arriving at state s1” is the same as “the
state-action distribution from timestep t = 0 starting from state s1”. We leave the proof of Equation (18)
for later and continue with the proof of Equation (7).

From Proposition 2.3 we have

vπ(s0) =
∑
t≥0

γt Eδs0 ,π [r(St, At)]

= Eδs0 ,π[r(S0, A0)] + γ
∑
t≥1

γt−1Eδs0 ,π [r(St, At)] . (9)

On one hand, a simple calculation shows (why?) that

Eδs0 ,π[r(S0, A0)] =
∑

a0∈A
π(a0|s0) · r(s0, a0) . (10)

On the other hand, for t ≥ 1 we have

Eδs0 ,π [r(St, At)] =
∑

st∈S,at∈A
Pδs0 ,π(St = st, At = at) · r(st, at) . (11)

Further,

Pδs0 ,π(St = st, At = at)

=
∑

a0∈A,s1∈S
Pδs0 ,π(St = st, At = at | A0 = a0, S1 = s1) · Pδs0 ,π(A0 = a0, S1 = s1)

=
∑

a0∈A,s1∈S
Pδs0 ,π(St = st, At = at | A0 = a0, S1 = s1) · π(a0|s0) · p(s1|s0, a0) . (12)

From Equation (18), summing both sides over the variables s1, a1, . . . , st−1, at−1, it follows that

Pδs0 ,π(St = st, At = at | A0 = a0, S1 = s1) = Pδs1 ,π(St−1 = st, At−1 = at) .

Combining with Equation (12), we have

Pδs0 ,π(St = st, At = at) =
∑

a0∈A,s1∈S
Pδs1 ,π(St−1 = st, At−1 = at) · π(a0|s0) · p(s1|s0, a0),
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and from Equation (11) we get that

Eδs0 ,π [r(St, At)] =
∑

a0∈A,s1∈S
π(a0|s0) · p(s1|s0, a0)

∑
st∈S,at∈A

Pδs1 ,π(St−1 = st, At−1 = at) · r(st, at)

=
∑

a0∈A,s1∈S
π(a0|s0) · p(s1|s0, a0) · Eδs1 ,π[r(St−1, At−1)] .

Combining this with Equations (9) and (10), we get

vπ(s0) =
∑

a0∈A
π(a0|s0)r(s0, a0) + γ

∑
t≥1

γt−1 ∑
a0∈A,s1∈S

π(a0|s0)p(s1|s0, a0)Eδs1 ,π[r(St−1, At−1)]

=
∑

a0∈A
π(a0|s0)

r(s0, a0) + γ
∑

s1∈S
p(s1|s0, a0)

∑
t≥1

γt−1Eδs1 ,π[r(St−1, At−1)]

︸ ︷︷ ︸
=vπ(s1)

 ,

where the swapping of the sums is justified because there are finitely many states and actions (why does
this justify swapping of the sums?).

Finally, it remains to prove Equation (18). To prove this, we just expand the definitions on the two
sides and match the terms to notice that the equality does hold. In particular, the expression on the left
hand side of Equation (18) is

Pδs0 ,π(S1 = s1, A1 = a1, S2 = s2, A2 = a2, . . . , St = st, At = at | A0 = a0, S1 = s1)

=
Pδs0 ,π(A0 = a0, S1 = s1, A1 = a1, S2 = s2, A2 = a2, . . . , St = st, At = at)

Pδs0 ,π(A0 = a0, S1 = s1) .

Further, one can show that the numerator of this expression is (why?)

Pδs0 ,π(A0 = a0, S1 = s1, A1 = a1, S2 = s2, A2 = a2, . . . , St = st, At = at)

= π(a0|s0)p(s1|s0, a0)π(a1|s1)p(s2|s1, a1) · · · p(st|st−1, at−1)π(at|st) ,

while

Pδs0 ,π(A0 = a0, S1 = s1) = π(a0|s0)p(s1|s0, a0).

Thus,

Pδs0 ,π(S1 = s1, A1 = a1, S2 = s2, A2 = a2, . . . , St = st, At = at | A0 = a0, S1 = s1)

= π(a1|s1)p(s2|s1, a1) · · · p(st|st−1, at−1)π(at|st) .

On the other hand, for the expression on the right hand side of Equation (18), we have

Pδs1 ,π(S0 = s1, A0 = a1, S1 = s2, A1 = a2, . . . , St−1 = st, At−1 = at)

= π(a1|s1)p(s2|s1, a1) · · · p(st|st−1, at−1)π(at|st) ,

which finishes the proof of Equation (18), and thus also the proof of the statement.
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4 Action-value functions

Definition 4.1 (Probability measure induced by using a policy in an MDP starting from a state-action
distribution). Fix a finite MDP M = (S, A, R, p), a policy π of this MDP, and a distribution
ν ∈ M1(S × A). Then, the probability distribution P—induced by using ν as the initial state-action
distribution and then following π in M—is a probability distribution P over some sample space Ω such
that there are random variables S0, S1, . . . : Ω → S, A0, A1, . . . : Ω → A, and R1, R2, . . . : Ω → R, for
which the following holds for every t ≥ 0 and ht = (s0, a0, r1, s1, a1, . . . , at−1, rt, st) ∈ Ht:

P(Ht = ht) = ν(s0, a0) · p(r1, s1|s0, a0)
· π1(a1|s0, a0, r1, s1) · p(r2, s2|s1, a1)
...

· πt−1(at−1|s0, a0, . . . , st−1) · p(rt, st|st−1, at−1) .

When the dependence of P on ν and π is important, we use Pν,π to signify this dependence. To simplify
notation, we also use P, Pν , and Pπ, when one, or both of these objects are clear from the context.

Again, Kolmogorov’s extension theorem guarantees the existence of Pν,π.
The distribution also satisfies a proposition similar to Proposition 1.6:

Proposition 4.2. The probability measure P := Pν,π satisfies the following properties: For any t ≥ 0,
ht = (s0, a0, r1, s1, a1, . . . , rt, st) ∈ Ht, r′ ∈ R, and s′ ∈ S, it holds that

P(S0 = s0, A0 = a0) = ν(s0, a0) , (13)

P(At = at|Ht = ht) = πt(at|ht), for t ≥ 1, (14)

P(Rt+1 = r′, St+1 = s′|Ht = ht, At = at) = p(r′, s′|st, at) . (15)

Further, if some probability measure P satisfies the above properties, then it also satisfies the properties
used in Definition 4.1.

The next proposition follows from the definition.

Proposition 4.3. For any µ ∈ M1(S) and policy π, if we define ν ∈ M1(S × A) to be

ν(s, a) = µ(s) · π(a|s) , (s, a) ∈ S × A ,

then we can choose a sample space Ω and the probability distributions Pν,π and Pµ,π over Ω such that

Pν,π = Pµ,π .

We also have the following strengthening of Proposition 1.7:

Proposition 4.4 (Single sample space). There exist a sample space Ω and random variables S0, S1, . . . :
Ω → S, A0, A1, . . . : Ω → A, and R1, R2, . . . : Ω → R such that the following hold:

1. for any policy π and initial state distribution µ ∈ M1(S), there exists a probability measure
Pµ,π ∈ M1(Ω) that satisfies Definition 1.4; and
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2. for any policy π and initial state distribution ν ∈ M1(S × A), there exists a probability measure
Pν,π ∈ M1(Ω) that satisfies Definition 4.1.

The first condition in the above proposition is Proposition 1.7.
Similarly to δs, for (s, a) ∈ S × A, we define δs,a ∈ M1(S × A) as follows:

δs,a(s′, a′) = I{s = s′, a = a′} .

Definition 4.5 (Action-value function of a policy). Fix an arbitrary policy π. The value function
qπ : S × A → R of π is defined by

qπ(s, a) = Eδs,a,π

∑
t≥0

γtRt+1

 , s ∈ S , a ∈ A .

In words, qπ(s, a) is the expected total discounted reward incurred when we start at state s, use action
a for the first time step, and in the subsequent timesteps follow policy π.

The next proposition gives the relationship between the two value functions vπ and qπ.

Proposition 4.6. We have

vπ(s) =
∑
s,a

π(a|s)qπ(s, a) .

5 Why so complicated?

Most papers and books introduce value (and action-value) functions through conditioning. The formulae
we see look as follows:

vπ(s) = E[
∑
t≥0

γtRt+1|S0 = s] , s ∈ S .

In comparison to our definition (cf. Equation (4)) this looks nice, simple and elegant. However, careful
inspection reveals that some things are lacking. First, the left-hand side depends on π, while the right-hand
side does not show any dependence on π. What does π influence on the right-hand side? It must influence
the distribution of the rewards, which comes into play through E. Hence, at least E should be indexed by
π, which is indeed what happens for example in our textbook. Then, the definition looks as follows:

vπ(s) = Eπ

∑
t≥0

γtRt+1|S0 = s

 , s ∈ S . (16)

Of course, this leaves the question of what exactly Eπ stands for? An expectation operator must correspond
to some probability measure. So there must be an underlying probability measure Pπ defined over some
event space with some properties. What are these? If we attempt a definition of Pπ we discover that we
want Pπ to be defined over an event space that holds the state, action and reward variables and that it
must satisfy certain properties. If we spell these out, we quickly arrive at something like Definition 1.4.
And of course there must be an initial state distribution that Pπ depends on (in fact, whatever Pπ is,
µ(s) = Pπ(S0 = s), s ∈ S, gives this distribution).
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Now, back to the definition of value functions with the help of conditioning: Recall that a conditional
expectation E[·|A] for an event A ⊂ Ω is simply the expectation with respect to the probability measure
PA(·) defined by PA(B) = P(A ∩ B)/P(A) provided that P(A) > 0. If, for example, X is a random
variable over Ω that takes values in the discrete set X ⊂ R,

E[X|A] =
∑
x∈X

x PA(X = x)
(

=
∑
x∈X

x P(X = x|A)
)

.

However, notice that the definition does not say anything about how E[X|A] should be defined when
P(A) = 0. In fact, in this case, the value of E[X|A] is, by convention, arbitrarily determined. That is, if
one wishes, one can use E[X|A] = 2 or E[X|A] = −2.

Hence, the problem with Equation (16): For any state s ∈ S such that Pπ(S0 = s) = 0, the value on
the right-hand side has an arbitrary value. This calls for trouble as we will quickly arrive at contradictions
with various arbitrarily assigned values! Of course, the astute reader may not that we should therefore be
careful so that the initial state distribution assigns a positive probability to any possible state. This will
indeed do it for this definition for finite state spaces (and something similar can be made to work even if
uncountably infinite state spaces provided we find a probability distribution that has full support over the
whole state space, which is not that trivial actually).

There are two downsides (at least) to relying on this approach of defining value functions through
conditioning: First, one needs to be still specific about the initial state distribution and second, extending
this idea to the definition of action-value functions is just a no-go. To see what the problem with this is
consider the following “definition” of the action-value function of a policy π:

qπ(s, a) = Eπ

∑
t≥0

γtRt+1|S0 = s, A0 = a

 , s ∈ S , a ∈ A , (17)

which we find even in our textbook (Eq. (3.13), page 58, choosing t = 0 there). The problem is
immediate once we write this down: This is only a good definition if Pπ(S0 = s, A0 = a) = 0.
But can we guarantee this still? The answer is, in general, no. Take a very simple case when
π is a deterministic memoryless policy. Then, whatever the state s ∈ S, if a ̸= π(s), then
Pπ(S0 = s, A0 = a) = Pπ(S0 = s)Pπ(A0 = a|S0 = s) = Pπ(S0 = s) · 0. Thus, Equation (17)
just cannot be used as a definition and we are forced to introduce Pδ(s,a),π, or at least to use Pν,π with a
probability measure ν over S × A which is positive over all state-action pairs. With this, Equation (17)
becomes a valid definition.

However, then a new problem arises. We have at least two versions of Pπ, one used in Equation (16)
(this is Pµ,π with µ ∈ M1(S)) and another one used in Equation (17) (this is Pν,π with ν ∈ M1(S × A)).
How do we know which one to use when? This is confusing to say the least. Can we perhaps just to use
Pν,π in Equation (16)? This again does not work. For that definition, it is important that the distribution of
actions in t = 0 follow the distributions coming from the policy π.

Another compounding issue with just using Pµ,π is that when we derive the Bellman equation for vπ,
one needs to show that the identity

Eµ,π[G1|S1 = s′] = Eµ,π[G0|S0 = s′] (18)
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holds for any s′ ∈ S (cf. (3.14) in the book, again choosing t = 0). In fact, this identity will only make
sense if Pµ,π(S1 = s′) > 0, but a careful inspection of the formulae shows that we do not need the identity
to hold in the opposite case (lucky). Still, under Pµ,π(S1 = s′) > 0, Equation (18) calls for a proof (which
is what we have also shown in these notes). In fact, this “stationarity” property is at the heart of Markov
Decision Processes and is thus a good practice to work out a formal proof for this.

In conclusion, we choose to avoid using conditioning as the basis of definitions as these definitions,
when properly carried out, require exactly as much preparation and notation of what we used: There is
no sparing of the discussion of the role of initial distributions in these definitions. And then, there is no
advantage of using conditioning as the definition compared to indexing, which makes this dependence
clear.

One final detail is that our textbook chose a definition of vπ that emphasizes the stationarity of the
return process under a memoryless policy. Going back to the definition in the book, we see there

vπ(s) = Eπ[Gt|St = s] , s ∈ S . (19)

Here, index t ≥ 0 on the right-hand side is free. The intended meaning here is probably that the right-hand
sides have the same value regardless of t ≥ 0, which is the value that we assign to the left-hand side. Of
course, that this is a correct definition (ie that the values on the right-hand side match) also calls for a proof
(in fact, Equation (18) is equivalent to this). Note that here choosing µ cannot in general help to make
Pπ(St = s) positive. And then, with the standard math textbook definition, which, as mentioned before,
defines a conditional expectation as an arbitrary value when the conditioning even has zero probability,
we definitely run into trouble.

Finally, note that a definition like Equation (19) can only work for memoryless policies. Hence, if we
want to get an answer to the question of whether memoryless policies are all one needs, we will be out of
luck with a definition like the above.

6 Avoiding trouble

One simple way of avoiding some of the challenges we faced in the proofs is to avoid defining the return
Gt and rather go by defining value functions directly via the total expected discounted reward (rather than
via the expected total discounted reward):

vπ(s) =
∞∑

t=0
γtEδs,π[Rt+1] .

Now, there is no need to reason about the existence of G0, the existence of the expectation of G0, or
whether the infinite sum over the time steps can be moved outside of the expectation as we started with a
definition where the infinite sum is already outside of the expectation. The definition of qπ can similarly
be just

qπ(s, a) =
∞∑

t=0
γtEδs,a,π[Rt+1] .

Of course, these definitions are equivalent to the earlier ones when the earlier definitions “work”. The
definitions with the sum outside of the expectation is perhaps less intuitive. It is a good challenge to figure
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out whether there are cases when the definition with the sum outside works, while the definition with the
sum inside the expectation does not work (the expectation does not exist).

The new definitions also invite a different approach to proving the Bellman equation for memoryless
policies:

Proposition 6.1. Let π be a memoryless policy and for t ≥ 0, let r
(t)
π (s) = Eδs,π[Rt+1], s ∈ S. Then,

r(t)
π = P t

πrπ ,

where we identify a function f : S → R with the vector (f(s1), . . . , f(sS))⊤ and Pπ ∈ RS×S is the
matrix whose (i, j)th element is (Pπ)i,j =

∑
a∈A π(a|si)p(sj |si, a) and rπ(s) =

∑
a∈A π(a|s)r(s, a),

where S = {s1, . . . , sS} and |S| = S.

In the proposition P t
π means the t-fold product of Pπ with itself. In words, r

(t)
π gives the vector

of expected rewards after following π in the MDP for t transitions for the various initial states (and in
particular, r

(0)
π = rπ). The proposition can be proved by induction on t = 0, 1, 2, . . . .

Based on this proposition, the proof of the Bellman equation for π is immediate. First, note that vπ is
well-defined. For ∥r∥ = maxs∈S |r(s)|, note that ∥r

(t)
π ∥ ≤ rmax. By the triangle inequality, for s ≥ 0,

∥
∑
t≥s

γtr(t)
π ∥ ≤

∑
t≥s

γt∥r(t)
π ∥ ≤ rmaxγs/(1 − γ) → 0 as s → ∞ ,

hence,
∑

t≥0 γtr
(t)
π is convergent. It then follows that

vπ =
∑
t≥0

γtr(t)
π =

∑
t≥0

γtP t
πrπ = rπ + γPπ

∑
t≥0

γtP t
πrπ = rπ + γPπ

∑
t≥0

γtr(t)
π = rπ + γPπvπ .

Calculating with vectors and matrices are not only useful for very clean proofs, but they are also useful
for computation. In particular, from the above, we see that

(I − γPπ)vπ = rπ ,

where I is the S × S identity matrix. Thus, vπ satisfies a linear system of equations. Thus, vπ can be
calculated by first calculating the matrix I − γPπ and then solving the above equation with a standard
linear algebra method for vπ. (Note that we already concluded that a solution to this equation exist. That it
has a single solution, which also means that I − γPπ is invertible, will be seen in the lecture on dynamic
programming.)
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Notes

1. Note that we abuse the notation by sometimes writing p(r′, s′|s, a), such as in this definition, whereas at other times, we might
write p(s′, r′|s, a). We want to assert to the reader that both these expressions are equivalent in the sense that both return the
probability of observing the next state s′ and reward r′ given the current state s and the action a, i.e. the ordering of the first two
variables is immaterial.

2. Note that we overload the notation by using the same symbol r for both the immediate reward function r(s, a), and the variable
denoting a particular value of the reward obtained r (or r′). However, this should not cause any confusion, and the usage should
be clear from context.

3. This is just the tower property of expectations, which states that for any random variables X, Y , E[E[X|Y ]] = E[X], provided
that the expectation of X exists. Indeed, for Y discrete, E[E[X|Y ]] =

∑
y∈Y P(Y = y)E[X|Y = y], where Y is the set of

values Y takes with positive probability. For the sake of simplifying calculations, in the above expression we can replace Y with
a superset of it, Y ′ ⊃ Y if for y ∈ Y ′ \ Y we give some meaning to E[X|Y = y]. Indeed, in what follows we will always do
this. But what value to give to this expression? Since this value will always gets multiplied by P(Y = y) = 0, it turns out that
this choice makes no difference: All the calculations give the same result regardless of what value we assign to E[X|Y = y]. In
summary, in what follows we allow expressions of the form E[X|Y = y] even when P(Y = y), in which case we assign an
arbitrary value to this expression. Note that this is a standard convention.
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