
Dynamic Programming

Csaba Szepesvári

Monday 6th February, 2023

Dynamic programming is the key,
To solve problems, smart and neat,

It takes complex tasks with glee,
And breaks them down to bits to see.

With overlapping subproblems found,
Optimal solutions can be wound,
From bottom up or top to bottom,

A path to the answer, so simple and common.

From knapsack to sequence alignment,
Dynamic programming’s got your back in,

Saving time and space, oh what a treat,
A problem solver, truly elite!

– ChatGPT

1 Dynamic Programming

Fix a finite MDP M = (S, A, R, p) and consider the continuing case with the discounted total
expected reward criterion with discount factor 0 ≤ γ < 1 (“finite, discounted MDP”). Recall that
rmax = max{|r| : r ∈ R}.

Dynamic programming is a set of tools and techniques to compute solutions to various problems that
involves recursion and caching, or memoization. The classic example of dynamic programming is the
computation of the Fibonacci sequence, where the idea is to store the previous values computed which
dramatically reduces the computation time of the simple recursive approach.

In the context of MDPs, dynamic programming is a set of techniques, such as value and policy
iteration, or linear programming, to compute a near optimal policy through calculating either the optimal
value function, or a good approximation of it.

1

2 Value iteration

Recall that the optimal value function, v∗, is the fixed-point of the Bellman-optimality operator, T . That
is, v∗ = Tv∗. Further, by the contraction mapping theorem, for any v0 ∈ RS , the iteration

vn+1 = Tvn, n ≥ 0 (1)

leads to a sequence (vn)n≥0 that converges to v∗ at a geometric rate:

∥vn − v∗∥ ≤ γn∥v0 − v∗∥ , (2)

where ∥ · ∥ is the maximum-norm: ∥v∥ = maxs∈S |v(s)|. Recalling the definition of T , the computation
in Equation (1) takes the form

vn+1(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s′|s, a)vn(s′)

 , s ∈ S .

The usual choice for v0 is to choose v0(s) = 0, s ∈ S (the constant zero function). With this choice,
Equation (1) is called the vanilla (simple) version of value iteration. Fix this choice for now (that is,
v0 = 0). Because ∥v∗∥ ≤ rmax/(1 − γ) (why?), we then have

∥vn − v∗∥ ≤ γn

1 − γ
rmax .

We call the quantity 1/(1 − γ) the effective horizon and one often uses the symbol H = 1/(1 − γ). With
this, the above inequality takes the form

∥vn − v∗∥ ≤ γnHrmax . (3)

The next question is when to stop this iteration and what to do with the computed approximation vn

of the optimal value function? The answer to the second question comes from the Fundamental Theorem,
which stated that greedy policies with respect to v∗ are optimal. The idea then is that if vn is a good
approximation to v∗, then a policy that is greedy with respect to vn may be near-optimal. Indeed, the
following result holds:

Proposition 2.1. Let v ∈ RS and let π be greedy with respect to v. Then

∥vπ − v∗∥ ≤ 2γH∥v − v∗∥ .

Proof. We have

v∗ − vπ = Tv∗ − Tπvπ

= Tv∗ − Tv + Tv − Tπvπ

= Tv∗ − Tv + Tπv − Tπvπ . (because π is greedy w.r.t. v)

Taking the norm of both sides, and using the triangle inequality,

∥v∗ − vπ∥ ≤ ∥Tv∗ − Tv∥ + ∥Tπv − Tπvπ∥
≤ γ∥v∗ − v∥ + γ∥v − vπ∥ . (T , Tπ are contractions)

2

By the triangle inequality, we have ∥v − vπ∥ ≤ ∥v − v∗∥ + ∥v∗ − vπ∥. Plugging this in and reordering,

(1 − γ)∥v∗ − vπ∥ ≤ 2γ∥v∗ − v∥ .

Dividing both sides by (1 − γ) gives the desired result.

Proposition 2.2 (A priori iteration bound for value iteration). Fix any ε > 0. Let n ≥ 0 be large enough
so that

γn+1 ≤ ε

2H2rmax
. (4)

Let π be greedy w.r.t. vn. Then π is ε-optimal: vπ ≥ v∗ − ε1 where 1 is the all-one function.

Proof. Fix some n ≥ 0 and let π be greedy w.r.t. vn. Combining Equation (3) with Proposition 2.1 we
have that

∥vπ − v∗∥ ≤ 2γn+1H2rmax

Then, if n satisfies the condition of the theorem, we have ∥vπ − v∗∥ ≤ ε.

Taking the logarithm of both sides of Equation (4) and reordering we see that the condition on n is

n ≥
log

(
2H2rmax

ε

)
log(1/γ) − 1 .

Thus if n is the smallest positive integer such that Equation (4) holds then

n ≤
log

(
2H2rmax

ε

)
log(1/γ) .

Note also that 1/ log(1/γ) ≤ H . Indeed, log(1/γ) = − log(γ) = − log(1 − (1 − γ)). Now,
log(1 + x) ≤ x holds for any x > −1. Hence, log(1/γ) ≥ 1 − γ = 1/H . Thus, it follows that

n ≤ H log
(

2H2rmax
ε

)
. (5)

While the dependence on 1/ε is mild, we see that the effort required scales linearly with H .
We now formulate an alternate stopping criterion. To develop this recall that by a previous result (Prop

5.9), for any n ≥ 0,

∥vn − v∗∥ ≤ H∥vn − vn+1∥ . (6)

Proposition 2.3 (Stopping just-in-time). Fix ε > 0. Let n ≥ 0 be the smallest integer such that

∥vn − vn+1∥ ≤ ε

2γH2 . (7)

holds. Then, if π is greedy with respect to vn then π is ε-optimal.

3

Note that choosing π to be greedy with respect to vn+1 also gives an ε-optimal policy (why?); the
logic here is that if vn+1 is already computed, vn+1 is expected to be a better approximation to v∗ then vn

then a greedy policy with respect to vn+1 is also expected to be better than a greedy policy with respect to
vn. Note that this does not prove that the policy that is greedy with respect to vn+1 is necessary better
than that is greedy w.r.t. vn.

Proof. Fix some n ≥ 0 and let π be greedy w.r.t. vn. Combining Equation (6) with Proposition 2.1 we
have that

∥vπ − v∗∥ ≤ 2γH2∥vn − vn+1∥ .

Hence, if Equation (7) holds then π is indeed ε-optimal.

It remains to see whether stopping based on Equation (7) is actually an improvement compared to
stopping based on Equation (4). For this, we have the following result:

Proposition 2.4. As before, let v0 = 0. Let n be the smallest positive integer such that the inequality in
(7) holds. Then,

n ≤ 1 + H log
(

4γH3rmax
ε

)
. (8)

Proof. Fix n as in the statement. For k ≥ 0,

∥vk − vk+1∥ ≤ ∥vk − v∗∥ + γ∥vk − v∗∥ ≤ 2γk∥v0 − v∗∥ ≤ 2γkHrmax .

Now, if k is an integer such that

2γkHrmax ≤ ε

2γH2 (9)

then n ≤ k. Solving for the smallest k such that Equation (9) holds, we find that

k ≤ 1 +
log

(
4γH3rmax

ε

)
log(1/γ) ≤ 1 + H log

(
4γH3rmax

ε

)
.

The proof is finished by chaining this inequality with n ≤ k.

Comparing the right-hand side of Equation (8) with that of Equation (5) we see that the second bound
is somewhat larger than the first one. However, they are fundamentally of the same order as H → ∞
(γ → 1), or ε → 0. We note in passing that comparing upper bounds is not entirely satisfactory: It can
be that any of these upper bounds is loose. Can we say something definite about whether the first or the
second stopping rule is better? This remains to be seen.

4

3 Policy iteration

Policy iteration construct a sequence of policies (πn)n≥0 as follows:

1. Choose an arbitrary memoryless policy π0;

2. Given πn, let πn+1 be a greedy policy with respect to vπn , with ties broken in favor of actions used
by πn.

Note that if in step 2, πn = πn+1 then we also have πn = πn+k for any k ≥ 0 and we may even stop the
procedure. Indeed, this is how typically policy iteration is presented (and implemented).

Definition 3.1 (Monotonicity). The function F : RS → RS is called monotonous if for any u ≤ v,
F (u) ≤ F (v) also holds.

Proposition 3.2 (Bellman operators are monotonous). For any memoryless policy π, Tπ is monotonous.
The same holds for the Bellman optimality operator T .

Proof. Left as an exercise.

Proposition 3.3 (Policy iteration is not slower than value iteration). Let (πn)n≥0 be obtained in the
process at the beginning of the section. Further let v0 = vπ0 and vn+1 = Tvn. Then,

∥vπn − v∗∥ ≤ ∥vn − v∗∥

and, in particular, we also have

∥vπn − v∗∥ ≤ γn∥vπ0 − v∗∥ . (10)

Proof. We claim that for any n,

v∗ ≥ vπn ≥ vn .

From this, the result follows using Equation (2).
That v∗ ≥ vπn follows from the definition of v∗. We prove the rest by induction on n ≥ 0. The result

holds by definition for n = 0. Hence, let n ≥ 0 and assume that

vπn ≥ vn (11)

holds.
We have

Tπn+1vπn = Tvπn ≥ Tπnvπn = vπn .

Applying Tπn+1 to both sides and using that by Proposition 3.2 Tπn+1 is monotonous, we get that for any
k ≥ 0,

T k
πn+1vπn ≥ T k−1

πn+1vπn ≥ · · · ≥ Tπn+1vπn = Tvπn .

5

Taking k → ∞, we get

vπn+1 ≥ Tvπn .

Now, by Equation (11), vπn ≥ vn holds. Using that by Proposition 3.2 T is monotonous, we get that

vπn+1 ≥ Tvπn ≥ Tvn = vn+1 ,

which finishes the induction, and, thus, also the proof.

Corollary 3.4 (A priori iteration bound for policy iteration). Fix ε > 0. Let n ≥ 0 be large enough so that

γn+1 ≤ ε

2Hrmax
. (12)

Then, πn is ε-optimal.

Proof. From Equation (10), ∥vπn − v∗∥ ≤ γn∥vπ0 − v∗∥ ≤ 2γnHrmax. Plugging in the definition of n

gives the result.

The bound that can be extracted from this result that is comparable to Equation (5) is

n ≥ H log
(2Hrmax

ε

)
− 1 . (13)

Note that while this bound is smaller than that in Equation (5), the difference is that here we have H

inside the logarithm, while in Equation (5) we had H2. Since log(H2) = 2 log(H), this is a factor of 2
difference in an additive (ε-free) term, which is not expected to make a large difference.

One can also develop stopping conditions for policy iteration, given some desired suboptimality level
ε. The details are left as an exercise.

4 Some thoughts

Value iteration and policy iteration as written here, in their vanilla form, are naive computational methods
in that they require “sweeps” through the state-action space. Further, they require access the the transition
probabilities and the immediate rewards. As such, they can only be used for small problems and when the
complete MDP model is available. Occasionally, this may be the case, but more often than not, either the
state, or the action space, or both may be too large, or the required data about the MDP is not available. In
these cases, alternate methods will be needed. Yet, value iteration and policy iteration serve as a good
starting point in developing these alternate methods and the proof techniques (“contraction arguments”)
used to analyze their behavior are also generally useful even beyond the analysis done here.

Recent results show that policy iteration results in the optimal policy in poly(|S|, |A|, H) steps. Note
that this assumes that all the calculations are done with exact arithmetic. Nevertheless, this is a highly
intriguing result. A similar result does not hold for value iteration: That is, one can always find an
MDP such that to get the optimal policy in the MDP, for any fixed polynomial function, poly, more than
poly(|S|, |A|, H) computational steps are needed by value iteration to give an optimal policy. While this
is curious, while exact optimal policies are obviously nice to have, more often than not, a policy that is

6

nearly optimal will be perfectly satisfactory and when the goal is to calculate such policies, the advantage
of policy iteration is less clear. In particular, policy iteration requires the exact evaluation of policies.
This requires solving for the fixed point of Tπ. Because of the special structure of Tπ, this fixed point
computation reduces to solving an |S| × |S| linear system of equations, which can be done in polynomial
time in |S|. However, the cost of solving this linear system can make policy iteration less desirable.

There are many modifications of these basic methods to speed them up. While interesting, ultimately,
for us it will be more interesting to consider the case when the state space is so large that exact calculations
are out of question, and one needs to use sampling and function approximation. Another more interesting
problem will be how to get near optimal policies when the MDP is not known but can be experimented
with. The significance of the basic results presented here is that they will form the basis of many of the
algorithms developed for these more challenging scenarios.

5 Simultaneous policy improvement

It is interesting to note that one can simultaneously improve upon a set of policies in simple ways. We
formalize these results in this section. We need some notation first. For two functions f, g : X → R we
use f ∨ g to denote the function mapping X to the reals that is obtained as the pointwise maximum of f

and g:

(f ∨ g)(x) = max(f(x), g(x)), x ∈ X .

We also generalize this to more than two functions: For f1, . . . , fk : X → R, we let ∨i∈[k]fi be the
function defined by

(∨i∈[k]fi)(x) = max(f1(x), . . . , fk(x)), x ∈ X .

Let π be a memoryless policy. We also introduce Mπ, M : RS×A → RS :

(Mq)(s) = max
a∈A

q(s, a)

(Mπq)(s) =
∑
a∈A

π(a|s)q(s, a) ,

where s ∈ S, q ∈ RS×A and π is any memoryless policy. Recall that vπ = Mπqπ and qπ is the unique
fixed-point of the Bellman operator T̃π : RS×A → RS×A defined by

(T̃π)(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)((Mπq)(s′)) .

Proposition 5.1. Let π1, . . . , πk be policies, q̄ = ∨i∈[k]qπi . Let π̄ be a policy that satisfies any of the
following conditions:

1. For any i ∈ [k], Mπ̄ q̄ ≥ Mπiqπi;

2. π̄ is greedy with respect to q: Mπ̄ q̄ = Mq̄;

3. For any s ∈ S, π̄(s) = πi(s) for any index i ∈ [k] such that vπi(s) = maxj∈[k] vπj (s).

7

Then, it holds that π̄ is at least as good as any of the policies πi:

vπ̄ ≥ vπi , i ∈ [k] . (14)

Proof. We first prove Equation (14) under the first condition and then we show that if either the second,
or the third condition holds then the first also holds.
Part 1: Fix i ∈ [k]. Assume that Mπ̄ q̄ ≥ Mπiqπi . Our goal is to show that vπ̄ ≥ vπi . For this, it suffices to
show that

T̃π̄ q̄ ≥ q̄ (15)

because then iterating T̃π̄, we get

q̄ ≤ T̃ k
π̄ q̄ → qπ̄ as k → ∞

and thus, applying Mπ̄ to both sides,

vπi = Mπiqπi ≤ Mπ̄qπi ≤ Mπ̄ q̄ ≤ Mπ̄qπ̄ = vπ̄ ,

finishing the proof. It remains to show Equation (15). Fix i ∈ [k]. By our assumption on π̄,
Mπ̄ q̄ ≥ Mπiqπi . Hence, it follows that T̃π̄ q̄ ≥ T̃πiqπi = qπi . Since this holds for any i ∈ [k],
T̃π̄ q̄ ≥ ∨i∈[k]qπi = q̄.
Part 2: Assume that Mπ̄ q̄ = Mq̄ holds. Fix i ∈ [k]. It suffices to show that Mπ̄ q̄ ≥ Mπiqπi . Indeed,

Mπ̄ q̄ = Mq̄ ≥ Mπi q̄ ≥ Mπiqπi ,

where the first inequality used the definition of M , the second used that q̄ ≥ qπi , which holds by the
construction of q̄.
Part 3: Fix s ∈ S. Assume that i ∈ [k] is such that π̄(s) = πi(s). Then, for any j ∈ [k],

(Mπ̄ q̄)(s) = q̄(s, πi(s)) = vπi(s) ≥ vπj (s) = qπj (s, πj(s)) = Mπj qπj .

8

	Dynamic Programming
	Value iteration
	Policy iteration
	Some thoughts
	Multiple policy improvement

